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Simplicity (eventually) wins

“Simplicity does not precede
complexity, but follows it.”

(Edsger Dijkstra)
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Widening context helps

Complex exponentials can simplify trigonometry, because they are mathematically easier to
manipulate than their sine and cosine components. One technique is simply to convert sines and
cosines into equivalent expressions in terms of exponentials sometimes called complex sinusoids.['!
After the manipulations, the simplified result is still real-valued. For example:
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COST COSY =
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(cos(z + y) + cos(z — y)) .
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(Ref: Wikipedia — Euler’s formula)


https://en.wikipedia.org/wiki/Euler's_formula
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Freyd & Stedrov, 1990

"(...) A special feature of our approach is a
general calculus of relations presented in part
two.



Motivation

Freyd & Stedrov, 1990

"(...) A special feature of our approach is a
general calculus of relations presented in part
two.

This calculus offers another, often more
amenable framework for concepts and methods
discussed in part one.”
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Braga, June 2003

JNO - “(...) What I find lacking in
functional programming practice
is formal specification...”

SPJ - “But, types are... the formal
specifications, aren't they?”

It took me 20+ years to fully appreciate this answer!
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“Magic” square

Pointfree:

AR B

P C Q P-RCS-Q

C<~—D

S

Pointwise:

Folds
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“Magic” square

Pointfree:

AR B

P C Q P-RCS-Q

C<~—D

S

Pointwise:
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Vertical composition

AR ¢

R
P C Q A<——C
/ - / / /
P - Q B 7 D

References
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Horizontal composition

AR _c R ¢ A<RR_
P - Q C Q = P - Q
B D D’ B<~— D

References
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|dentity

B<—————D B
S S
id - id
B S D

Acknowledgements References

(Similarly for horizontal.)
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Converse

PO

B

I S A B
Pl C Q & R°‘ - ‘50
B<5— C

(@)

-

QO
The converse of a square is its “passive voice’ (U

N,

xRy yRx
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Functorial squares

Functor [F:
AR ¢ FA<R _wc
Pl - Q = FP - FQ
B S D F B s F D

References

[F should be monotonic and preserve converses — a relator (Freyd and Scedrov, 1990).
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Squares with functions

Some relations f fit into the following squares:

A id A fo B
idt - L f C lid
A B B

Acknowledgements
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Squares with functions

Some relations f fit into the following squares:
Aoid _a_f p

A B<~——B8B
fo id

Left square: (Va = (3b :: bf a))

Acknowledgements References

(3)

f is total.
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Squares with functions

Some relations f fit into the following squares:

A id A o B

idt - Lf - lid (3)

A B<~——B8B
fo id

Left square: (VY a :: (3 b = bf a)) f is total.
Right square: (V b,b’ =z (3a = bfaAb fa)= (b=1V))

f is univocal.
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Squares with functions

Some relations f fit into the following squares:
Aoid _a_f p

idt - Lf - lid (3)

A B<~——B8B
fo id

Left square: (VY a :: (3 b = bf a)) f is total.
Right square: (V b,b’ =z (3a = bfaAb fa)= (b=1V))
f is univocal.

Such relations f are called functions.
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Squares with functions

Let f be a function. Then:

A<R ¢ A<R_ ¢

fl - lQ = idt - LQ

B<~———8B A<——B
id fo

This is the shunting rule:
f-RCQ & RCf°-Q

References
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Squares with functions

Let f be a function. Then:
R

fl - lQ = idt - LQ
B<~——B A<—B
id fe

This is the shunting rule:
f-RCQ & RCf°-Q

Taking converses:
R-f°PCQ & RCQQ-f

References
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“Nice” rules about functions

Functional equality:

fCg & f=g & gCf (6)
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TINE 1 =
Nice" rules about functions

Functional equality:

fcg & f=g & gcf

J-quantifiers go away:

b(f°-R-g)a < (fb)R(ga)

References

I’=  Very useful in practice (0
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Squares with functions
A very common square with two functions:
A R
f C g f-RCS-g (8)

C D




Squares

Squares with functions

A very common square with two functions:

AR B
f C g f-RCS-g (8)
C D

This square captures a higher-order relation on functions:
fSRg & f-RCS-g (9)

In words:

“R-related inputs are mapped to S-related outputs”.
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“Higher-order” squares

Because of their role in free theorems, these squares will be referred to as Reynolds

squares:
R
= B A<F B
f - g that is to say, C > D
C D CA<=—DF
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“Higher-order” squares

Because of their role in free theorems, these squares will be referred to as Reynolds

squares:
R
= B A<F B
f - g that is to say, C > D
C D CA<=—DF

Thus one is lead to relational exponentials S¥ such that e.g.
(57)° = (57 (10)
id' = id (11)
etc. NB: We often write S < R or R — S instead of S® when exponents get too
nested.
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“Higher-order” squares

Functions-only Reynolds squares:

f(khg © f-h=k-g (12)
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“Higher-order” squares

Functions-only Reynolds squares:

f(kYg & f-h=k g (12)
In case of h° instead of h,

f(k"Ygeaf-h°Ck-g (13)

we get a higher-order function (via shunting + equality):

(kK")g=k-g-h (14)
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“Higher-order” squares

Then:
(id—k)g =
(h° —id)g =

k-g
g-h
cf. covariant and contravariant exponentials.
In fully pointfree notation, (15,16) become
k' = (k)
id"°) = (-h)
Then, by (10):
id" = (-h)°

and so on and so forth.

Acknowledgements References

(15)
(16)

(17)

Rich construction! (0)
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Higher-order Reynolds squares

. . . . . R .
Relational exponentials SR can involve other exponentials, for instance (S®)" i.e.
R — S

A< R B
ft c lg f(R—S9g
X< yD

se

Let us unfold this, assuming all fresh variables universally quantified:

References
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Higher-order Reynolds squares

f(R—Sg

{ Reynolds square (8) }
f-RC S g

{ shunting (4) followed by “nice rule” (7) }
aRb=(fa)S?(gb)
{ (8)again }
aRb=((fa)-Q C S-(gb))
{ (4) followed by (7) again }
aRb=cQd=(fac)S(gbd)

References

(18)

(19)
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Relational types

Let f = g in Reynolds square (8):
A<LE A
fl C lf f-RCS-f (20)

We often abbreviate f SR f to f : R — S, meaning that f has relational type R — S.

Note how type variables A and C in f : A — C are straightforwardly replaced
by relations R and S in f : R — S.

I'= Types ‘are” relations (Voigtlinder, 2019).




Motivation Squares

f(<) = (2)
f:(to+)—>id
F:T —id

Reynolds squares

Free theorem squares Folds

Relational types by example

f is monotonic

f is periodic

f is constant

Acknowledgements References




Reynolds squares

Category

Objects — binary relations R, S, ...

Morphisms — R —~ S as above (20)
= This category is named Rely in (Plotkin et al., 2000).

Relational type R — S corresponds to the homset Rels (R, S).



Reynolds squares

Category

Objects — binary relations R, S, ...

Morphisms — R —~ S as above (20)
= This category is named Rely in (Plotkin et al., 2000).
Relational type R — S corresponds to the homset Rels (R, S).

Rels is Cartesian closed, meaning that homset R — Q° is, by uncurrying, isomorphic
to RxS— Q.

NB: “Tensor” product: (y,x) (R x S)(b,a) &y RbA XS a.
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Free theorem squares

Let a parametric function f : F X — G X be given.

Its free theorem states that f has relational type
f:-FR—-GR (21)

for any R relating its parameters, as shown in the corresponding square:
FA<'R _FB
f C f

GA G B

GR

This extends to multi-parametric f, as shown next.

References
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Free theorem squares

Example: Haskell constant function const:a — b — a.

By (21), const has relational type R — R®, that is:
R

Ao

constl C Lconst const- R C R® - const

B D

References

(22)
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Free theorem squares
R
A<—C
const Q const

B D

Acknowledgements

References
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Free theorem squares

References
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Free theorem squares

AR ¢ A< A
R:=id
const Q const const g const
AB P AB AP
RS id®

B<——0D

const a - const a

A<——A

S
d

References
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Acknowledgements

Free theorem squares

R

A<——C

const Q const

B D

%

B
\ |const a
B A

-
(const a)°

id

A<—A

const g const
AB . AD
id®
9)
S
B<——D
shunting
<~——>  const a C const a
A<—A

id

References
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Free theorem squares

D S C (const a)° - (const a)

S
-~

- const a
<

B
idl
B

So (const a)° - const a is the largest possible S, i.e. the top relation T:

A

(const a)°

(const a)° - (const a) =T

Thus no other function can be less injective than const a.

References
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On Injectivity

NB: injective functions are those that fit the square:
f

B~—A

A<—A

id

Path ° - f is the kernel of f.

The kernel f° - f of a function f tells how injective f is.

The larger the kernel the least injective the function is.
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Free theorem squares

T

const a const a

{:
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Free theorem squares

B M

T

const a const a ) const a = ‘const a

A<——
id

{:

const a-h = const a

References
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Free theorem squares

B M

T

const a const a ) const a = lconst a

A<——
id

{:

const a-h = const a

const - const

B D

References
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Free theorem squares

B<h—D

[~}

const a const a S:=h const al = lconSt a
(_ A A ~ A
const a-h = const a
AR ¢ A<l c
const - const R’ S = h’ id ConStl - lconst
AB cD AB ~— cP

RS

h - (const ¢) = const (h ¢)

References
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Free theorem squares

Example:

flipu(a—b—c)—b—a—c

Free theorem: flip: QSR — QRS, ie.
g(R— Q) f = (flipg) (S — QF) (f1ip f)

That is (where f abbreviates flip f):

AR x B<~=> Yy
gl - fo= El - f
CcB zY cA z7X

@° QF

References
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Free theorem squares

For Q:=id,S :=id and R := r (a function):

f(r—id)g=f(id—id)g
e { (12):(15) }

~

f-r=g = ? Cid-g

= { id" = (-r)° (17) ; substitution of g; shunting (4) }
(r)-f=F-r

This is the fusion-law of flipping — here obtained more directly than through an

adjunction as in e.g. (Oliveira, 2020).

References
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Free theorem squares

Since types are (higher-order) squares...

“how much is in a type” ?



https://hackage.haskell.org/package/base-4.19.0.0/docs/Data-Foldable.html
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Free theorem squares

Since types are (higher-order) squares...

“how much is in a type” ?

Quite a lot.

As we shall see by handling the types of the following functions:

foldl :: Foldablet = (b—a—b) - b—ta—b
foldr :: Foldablet = (a— b —b) - b—ta—b

(Hackage's Data.Foldable )

References

(26)


https://hackage.haskell.org/package/base-4.19.0.0/docs/Data-Foldable.html
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foldl and foldr squares

Relational types (for T in the Foldable class):

foldl : (S — S®) — (S — STFR)
foldr: (R — S°) — (S — STF)

As seen above:
e Two squares in each type.

e The left one is a pre-condition for the right one to hold.

References
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The squares of

foldl squares

foldl: (S — SF) — (S = S™FR)

are:

B<> Yy

= foldl g

C Jfoldl f

BTA = YTX

References

(29)
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For R,S :=id, h (hence X = A), both ST R and S¥ reduce to (h-) by T id = id and
(15).

So the squares become equalities:

B-" vy B~ vy
gi \Lf = foldl gl ifoldl f
BA YA B’]l‘ A yT A
(h) (h)

Pointwise:
h(fyx)=g(hy)x = h(foldl f yxs)=foldl g (hy) xs

Fusion law of foldl proved in (Bird and Gibbons, 2020) for finite lists.




Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements

foldr

Repeating the above exercise for foldr (28):

AR x B> vy
gl (- lf = foldr gl - lfoldr f
BB YY B?l‘ A Y']I‘ X
Ss ST R

Same right square as in (29), but the side-condition square is different:
g-RCSf

References

(30)
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foldr squares

For R,S :=id, h we get

A< p B<~"' vy
gi if = foldr gl J/foldr f
BB vyY BTA____yTA
L ()
where the side-condition square unfolds to:
g (id — h") f
< C
(g x) " (f x)
< { (12) }

(gx)h=h-(f x)

References
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foldr squares

Altogether, one has

B<"y B——Y
gX\L \fo = foldr gl ifoldr f
B -~ Y BT A i yT A
that is:
(gx)-h=h-(fx) = foldr g-h=(h)-foldr f (31)
i.e. the fully pointwise:
gx(hy)=h(fxy) = h(foldrf exs)=foldr g (he)xs (32)

foldr-fusion law proved in (Bird and Gibbons, 2020) for finite lists.
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Corollary of foldr-fusion

In (31), let f and g be the same function, say s, and let h:=s a

sa

B<2 B B-——8
s xi sx = foldr S\L lfoldr s
B B TA TA
s B Yevsy B

Then (31) becomes:

(sx)-(sa)=(sa)-(sx) = foldrs-(sa)=(sa)-foldrs

References

(33)
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Permutativity squares

Square
B<2 B
SXi/ S X

captures the (left) permutativity property of (Danvy, 2023):
(sx)-(sa)=(sa)-(sx)

— i.e. the fully pointwise s x (say) =sa (s x y)

= If s is associative and commutative then it is permutative.

References

(34)

(35)
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Is foldl equal to foldr?
Looking at

foldl :: Foldable t = (b—a—b) - b—ta—b
foldr :: Foldable t = (a—b—b) > b—ta—b

the type-wise distance between foldr and foldl is the flip (24) of the first parameter.

So the “best fit” one can aim at is
foldl f = foldr f (36)

possibly valid for a (as wide as possible) class of functions f and instances of class
Foldable.
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But... no law relating both

Free theorems only relate pairs of folds, e.g. in (32):
gx(hy)=h(fxy) = h(foldrf e xs)=foldr g (he) xs

Perhaps a universal property could be found?

For this we need to get rid of one foldr.

References
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But... no law relating both

Free theorems only relate pairs of folds, e.g. in (32):
gx(hy)=h(fxy) = h(foldrf e xs)=foldr g (he) xs

Perhaps a universal property could be found?
For this we need to get rid of one foldr.

One way is to assume that, for some « and 7,
foldr o v = id (37)

holds. Then (f,e:=a,~):
gx(hy)=h(axy) = hxs=foldr g (h~) xs
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Towards foldr-universal

Let us introduce z = h v and drop xs:

hy=z
= h=foldr g z 38
{h(axy)ng(hy) & (38)

So, foldr g z is the unique solution for h of the equations:

{ hy=z
h(axy)=gx(hy)

By substituting this solution in the equations we get a definition for foldr:

foldr g zy ==z (39)
foldr g z (e x y) = g x (foldr g z y)
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Towards foldr-universal

Moreover, this definition is mathematically equivalent to (just replace h by foldr g z
and simplify):

hy=z
h=foldr g z = 40
& {h(axy)=g><(hy) (40)
Altogether, (38) and (40) make up a universal property:
B hy=z
h=foldr g z & {h(axxs):gx(hxs) (41)

(For lists, we can easily identify v =[] and o x xs = x : xs.)

What about foldI?
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Wikipedia

O @® W Fold (higher-order function) - X + v
<« c L) Gl G Siir 3} | Finish update
& e 3 All Bookmarks

“=yould build. The extraneous intermediate list structure can be

$= hated with the continuation-passing style technique, foldr f z
xs == foldl (\k x—> k . f x) id xs z ;similarly, foldl f
z xs == foldr (\x k=> k . flip f x) id xs z ( flip is
only needed in languages like Haskell with its flipped order of arguments
to the combining function of foldl unlike e.g., in Scheme where the
same order of arguments is used for combining functions to both

foldl and foldr).

https://en.wikipedia.org/wiki/Fold_(higher-order_function)

References


https://en.wikipedia.org/wiki/Fold_(higher-order_function)
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Wikipedia
That is,
foldl f = foldr (Ax k — k- f x) id (42)
or
foldl f = foldr (6 f) id (43)

where (0 f) x k = k-(?x)
cf. the (functional) square
BT A

('“i i? (44)

BB < BB

(k)
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Universal-foldl

An advantage of defining foldl “as a foldr” (43) is that the universal property of the
latter induces the universal property of the former:

k = foldl f

& { foldl f = foldr (0 7) id (43) ; flipping }
k = foldr (6 f) id

= { universal-foldr (41) etc }

;vzld
k (awx xs) = (0 f) x (k xs)
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Universal-foldl

= { introduce z and flip }

kzy=z
kz(axxs)=(0f)x(kxs)z

S { square(44)—(9f)xg:g-(?x) }

kzy=z
k z (ax xs) =k xs (f z x)

i=4 { flipping }

kzy=z
k z (ax xs) =k (f zx) xs
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Universal-foldl

Thus we get the universal-property of foldl:
kzy=z

k=foldl f < { k z(axxs)=k(f zx)xs

Acknowledgements

References

(45)
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Universal-foldl

Thus we get the universal-property of foldl:
kzy=z

k z(axxs)=k(f zx)xs (45)

k=foldl f < {

Good — we already know something about foldl and foldr (0)
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Universal-foldl

Thus we get the universal-property of foldl:
kzy=z

k=foldl f < { k z(axxs)=k(f zx)xs

Good — we already know something about foldl and foldr (0)

But question (36) remains:

Under what conditions does foldl f = foldr ? hold?

References

(45)
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Equating foldl and foldr

A popular assumption is that foldl f e and foldr fe compute the same output for 7
associative and e its unit, see e.g. exercise 1.10 of (Bird and Gibbons, 2020).

However, we have that, for instance (= is div),
foldl (=) 100000 [99,2,7] = 72 = foldr (=) 100000 [99,2, 7]
foldl (=) 10000 [99,2,7] = 7 = foldr (=) 10000 [99,2, 7]
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Equating foldl and foldr

A popular assumption is that foldl f e and foldr fe compute the same output for 7
associative and e its unit, see e.g. exercise 1.10 of (Bird and Gibbons, 2020).

However, we have that, for instance (= is div),
foldl (=) 100000 [99,2,7] = 72 = foldr (=) 100000 [99,2, 7]
foldl (=) 10000 [99,2,7] = 7 = foldr (=) 10000 [99,2, 7]

and yet
o neither (<) nor (<) are associative

e the other parameter can be any number.

How do we explain this and similar examples?
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Equating foldl and foldr

We can use foldl-universal (45) to find an answer:

foldl f = foldr f
=1 { universal property (45) }

foldr f z Y=z
foldr f z (o x xs) = foldr f (f z x) xs
= { flipping f z x }

foldr f z Y=z
foldr f z (o x xs) = foldr f (f x z) xs

References
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Back to the permutativity squares

Recall (33)
B<* B B<=>*_B
s ai \LS a = foldr sl/ ifoldr s
B~ B B']TA - B']I‘A
sx - (s x-)
which, for s := f, becomes
B f x B B-fx p
?ai ¥a = foldr ?i ifoldr?
B~—B B’IFA<7 BTA
f x (?x)

This suits us because permuting foldr f with  x will be useful. Let us see why:

References
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Equating foldl and foldr

foldr f z Y=z
foldr f z (o x xs) = foldr f (f x z) xs

=1 { (33) assuming permutativity: (? x) - (? a) = (? a)- (? x) }
foldr f z Y=z
foldr f z (o x xs) = f x (foldr f z xs)

& { definition of foldr (39) }

True
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Conclusion

We conclude that foldl f = foldr ? holds for the instawnces of class Foldable such that
foldr o v = id for some « and 7 (37), provided that f is permutative.

Back to e.g.
foldl (=) 100000 [99,2,7] = 72 = foldr ( ) 100000 [99, 2, 7]

foldl (<) 10000 [99,2,7] = 7 = foldr (<) 10000 [99, 2, 7]

how can we be sure (<) is permutative?
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Galois connection squares

The specification of x + y is a Galois connection:

(<)

A<——A
(Xy)ol — \L(+y) axy<x & as<x-+y
B<~—B

(<)

We can use (46) and indirect equality over (<) to prove

References
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Never underestimate indirect equality

y<(x+b)+a
& { Galois connection (46) twice }
(y xa) x b< x
= { (x) is associative and commutative }
(y xb)xa<x
& { Galois connection (46) twice in the opposite direction }
y<(x=+a)=+b
{ by indirect equality (Dijkstra, 2001) }
(x+b)a=(x+a)+b

References
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Comments

Knowing that permutativity is enough for foldr/foldl “equality” is not new — see e.g.
(Danvy, 2023).

Danvy's reasoning is, however, quite different: permutativity is postulated as side
condition and then proved in Coq by list induction.

I’= Above, permutativity arose (generically) by free-theorem calculation.

Moreover, it was shown that a commutative + associative lower adjoint f in f 4 g
ensures a permutative g, widening Olivier Danvy's result.
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Summary

« Simplicity (eventually) wins
I’ “Magic” squares (0
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Summary

« Simplicity (eventually) wins
I'= “Magic” squares ()

« Widening scope (usually) helps
I”= (Binary) relations!
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FPCA 1989

“From the type of a polymorphic function we
can derive a theorem that it satisfies. (...)
How useful are the theorems so generated?

Only time and experience will tell (...)"

Indeed — many vyears later, experience is still
telling us how useful such a fantastic result is!
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Permutativity matters

Insertion
insert :: Ord a = a — [a] — [a]
on a linearly ordered list is a permutative operation.

Thus insertion sort
foldr insert []
computes the same as

f\_/
foldl insert [].

This is assumed in the example of (Gibbons, 1996).
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Permutativity matters

Diffie-Hellman key exchange (Merkle, 1978):

Alice Bob

+

Secret colours 9

—
=
< =

o (+red) - (+cyan) = (+cyan) - (+red)
(assume that

mixture separation  [——)
P —-—

is expensive) -

+

Secret colours 9

Common secret -

1Source: Wikipedia

Y
A

-l

0 [
A
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Pointwise ordering squares
Let R:=id, S :=(X):

A< A
f‘ C ‘g fg(g).g
C D

(<)

This square captures the (<)-pointwise-ordering of functions:

fF(Q)lg & (Va:= fa<ga)

In words:

Acknowledgements

“The same input is mapped to (<)-related outputs”.

References
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Logical relation squares

Let f,g: =, in a Reynolds
square, where « and 3 are

[F-algebras:
FA<'R Fp
fe? - Jé]

A<—8B

In a succint way, the square
tells that R is a logical
relation from «a to 5.

Compare with:

Definition 2.2. Given a signature X and two models, M and N, of the language L
generated by Z, a (binary) logical relation from M to N consists of, for each type o
of L, a relation R, C Mg x N, such that

o forall f € My_.r and § € Ny_.r, we have f Ry .. g if and only if for all x € M,
and y € Ng, if x Ry y then f(x) R g(y);

o for all (xo, ¥1) € Myxr and (yo,y1) € Nox, we have (xo, %1) Roxx (Yo, y1) if
and only if xo Rg Yo and x1 R y1;

o xRy %

e M(c) Ry N(c) for every constant c in X of type o.

(Plotkin et al. (2000) 'Lax Logical Relations’,
ICALP 2000: 85-102)
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Algebraic squares

In case R is a function h (R := h),

FA<—FB
B——A
h

the square means
a-Fh=h-p

by (6) and h is said to be a F-homomorphism.
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Coalgebraic squares

Let f,g: =, in a Reynolds square, where v and ¢ are F-coalgebras:
R

A<~——8B

v - ¢
FA<—TFB
F R

R is said to be a bisimulation between the two coalgebras, meaning:

(Va,b: aRb: (va)(FR)(¢b))

References
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Hoare triple squares

Let &, :A—)Abesuchthatbdea(:)b:a/\pain:
A
B B

This square captures the Hoare triple:

%

<—

(Va: pa=q(fa))
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Define
y <c x&y<Cx

for some scalar C, in:

®
(Zno)
No =—— No
f - g
R R
XC
Meaning:

Free theorem squares

Big-O squares

(VMn:nzn=fn<Cgn

Folds
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Checking that (43) defines foldl
We unfold (43) via universal property (41):

foldl f = foldr (0 f) id

& { universal-foldr (41) }
foldl 7 v =id
foldl f (a x xs) z = (0 f) x (foldl f xs)

& { definition of 0 (44) }
foldl 7 v =id
foldl f (a x xs) = foldl f xs (f x z)
& { go pointwise on z and unfold the flips }

foldl f zv =12z
foldl f z (o x xs) = foldl f (f z x) xs
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On relational exponentials SR

By vertical composition (1) one immediately infers:

/ ’
{ schsl? = sfcs”

We also know that id™ = id (11).
By horizontal composition (2) we get
SR . S/R, g (5 . 5/)(R'R,) (48)

However, the converse inclusion does not hold and so relational exponentiation is not in general
a (bi)relator — in a sense, it can be regarded as a “lax (bi)relator.

Backhouse and Backhouse (2004) give conditions for strengthening (48) to an equality that
include the cases involving functions and converses of functions used above.
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Data.Foldable

instance Foldable M where
foldMap = maybe mempty

foldr _ z Nothing = z
foldr f z (Just x) = f x z

foldl _ z Nothing = z
foldl f z (Just x) = f z x
Let o x _ = Just x and v = Nothing and unfold foldr o ~:

foldr o« Nothing Nothing = Nothing
foldr o Nothing (Just x) = a x z = Just x

So foldr a v = id.
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