
How much is in a square? Calculating functional

programs with squares

JFP journal-first paper

ICFP 2025 — Singapore, 15 October 2025

J.N. Oliveira

Univ. Minho & Inesc tec (Portugal)

https://www.cambridge.org/core/journals/journal-of-functional-programming/article/how-much-is-in-a-square-calculating-functional-programs-with-squares/F48258008F47DC9F53AA2E61B4E511A7

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Summary of the talk

• Simplicity (eventually) wins

• Widening scope (usually) helps

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Summary of the talk

• Simplicity (eventually) wins

• Widening scope (usually) helps

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Simplicity (eventually) wins

“Simplicity does not precede
complexity, but follows it.”

(Edsger Dijkstra)

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Widening context helps

(Ref: Wikipedia 7→ Euler’s formula)

https://en.wikipedia.org/wiki/Euler's_formula

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Freyd & Ščedrov, 1990

”(...) A special feature of our approach is a
general calculus of relations presented in part
two.

This calculus offers another, often more
amenable framework for concepts and methods
discussed in part one.”

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Freyd & Ščedrov, 1990

”(...) A special feature of our approach is a
general calculus of relations presented in part
two.

This calculus offers another, often more
amenable framework for concepts and methods
discussed in part one.”

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Functions

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Functions ⊆ Relations

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Braga, June 2003

JNO - “(...) What I find lacking in
functional programming practice
is formal specification...”

SPJ - “But, types are... the formal
specifications, aren’t they?”

It took me 20+ years to fully appreciate this answer!

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Squares

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

“Magic” square

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

“Magic” square

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

“Magic” square

Pointfree:

A

P

��

B

Q

��

Roo

⊆

C D
S

oo

P · R ⊆ S · Q

Pointwise:

∃ a d

P · R ⇒ S · Q

∀ c b c b

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

“Magic” square

Pointfree:

A

P

��

B

Q

��

Roo

⊆

C D
S

oo

P · R ⊆ S · Q

Pointwise:

∃ a d

P · R ⇒ S · Q

∀ c b c b

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Vertical composition

A

P

��

C

Q

��

Roo

⊆

B

P′

��

D
S

oo

Q′

��

⊆

B ′ D ′
S ′

oo

⇒

A

P′·P

��

C

Q′·Q

��

Roo

⊆

B ′ D ′
S ′

oo

(1)

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Horizontal composition

A

P

��

C

Q

��

Roo C ′
R′oo

Q′

��

⊆ ⊆

B D
S

oo D ′
S ′

oo

⇒

A

P

��

C ′
R·R′oo

Q′

��

⊆

B ′ D ′
S ·S ′

oo

(2)

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Identity

A

id

��

C

id

��

Roo

⊆

A

P

��

C

Q

��

Roo

⊆

B

id

��

D
S

oo

id

��

⊆

B D
S

oo

⇔

A

P

��

C

Q

��

Roo

⊆

B D
S

oo

(Similarly for horizontal.)

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Converse

A

P

��

C

Q

��

Roo

⊆

B D
S

oo

⇔

A

R◦

��

B
P◦oo

S◦

��

⊆

C D
Q◦

oo

The converse of a square is its “passive voice”

x R◦ y ⇔ y R x

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Functorial squares

Functor F:

A

P

��

C

Q

��

Roo

⊆

B D
S

oo

⇒

F A

F P

��

F C

F Q

��

F Roo

⊆

F B F D
F S

oo

F should be monotonic and preserve converses — a relator (Freyd and Scedrov, 1990).

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Squares with functions

Some relations f fit into the following squares:

A

id

��

A

f

��

idoo B
f ◦oo

id

��
⊆ ⊆

A B
f ◦

oo B
id

oo

(3)

Left square: 〈∀ a :: 〈∃ b :: b f a〉〉 f is total.

Right square: 〈∀ b, b′ :: 〈∃ a :: b f a ∧ b′ f a〉 ⇒ (b = b′)〉

f is univocal.

Such relations f are called functions.

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Squares with functions

Some relations f fit into the following squares:

A

id

��

A

f

��

idoo B
f ◦oo

id

��
⊆ ⊆

A B
f ◦

oo B
id

oo

(3)

Left square: 〈∀ a :: 〈∃ b :: b f a〉〉 f is total.

Right square: 〈∀ b, b′ :: 〈∃ a :: b f a ∧ b′ f a〉 ⇒ (b = b′)〉

f is univocal.

Such relations f are called functions.

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Squares with functions

Some relations f fit into the following squares:

A

id

��

A

f

��

idoo B
f ◦oo

id

��
⊆ ⊆

A B
f ◦

oo B
id

oo

(3)

Left square: 〈∀ a :: 〈∃ b :: b f a〉〉 f is total.

Right square: 〈∀ b, b′ :: 〈∃ a :: b f a ∧ b′ f a〉 ⇒ (b = b′)〉

f is univocal.

Such relations f are called functions.

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Squares with functions

Some relations f fit into the following squares:

A

id

��

A

f

��

idoo B
f ◦oo

id

��
⊆ ⊆

A B
f ◦

oo B
id

oo

(3)

Left square: 〈∀ a :: 〈∃ b :: b f a〉〉 f is total.

Right square: 〈∀ b, b′ :: 〈∃ a :: b f a ∧ b′ f a〉 ⇒ (b = b′)〉

f is univocal.

Such relations f are called functions.

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Squares with functions

Let f be a function. Then:

A

f

��

C

Q

��

Roo

⊆

B B
id

oo

⇔

A

id

��

C
Roo

Q

��
⊆

A B
f ◦

oo

This is the shunting rule:

f · R ⊆ Q ⇔ R ⊆ f ◦ · Q (4)

Taking converses:

R · f ◦ ⊆ Q ⇔ R ⊆ Q · f (5)

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Squares with functions

Let f be a function. Then:

A

f

��

C

Q

��

Roo

⊆

B B
id

oo

⇔

A

id

��

C
Roo

Q

��
⊆

A B
f ◦

oo

This is the shunting rule:

f · R ⊆ Q ⇔ R ⊆ f ◦ · Q (4)

Taking converses:

R · f ◦ ⊆ Q ⇔ R ⊆ Q · f (5)

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

“Nice” rules about functions

Functional equality:

f ⊆ g ⇔ f = g ⇔ g ⊆ f (6)

∃-quantifiers go away:

b (f ◦ · R · g) a ⇔ (f b) R (g a) (7)

B
f // C D

Roo A
goo

f ◦·R·g

ii

R Very useful in practice

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

“Nice” rules about functions

Functional equality:

f ⊆ g ⇔ f = g ⇔ g ⊆ f (6)

∃-quantifiers go away:

b (f ◦ · R · g) a ⇔ (f b) R (g a) (7)

B
f // C D

Roo A
goo

f ◦·R·g

ii

R Very useful in practice

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Squares with functions

A very common square with two functions:

A

f

��

B

g

��

Roo

⊆

C D
S

oo

f · R ⊆ S · g (8)

This square captures a higher-order relation on functions:

f SR g ⇔ f · R ⊆ S · g (9)

In words:

“R-related inputs are mapped to S-related outputs”.

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Squares with functions

A very common square with two functions:

A

f

��

B

g

��

Roo

⊆

C D
S

oo

f · R ⊆ S · g (8)

This square captures a higher-order relation on functions:

f SR g ⇔ f · R ⊆ S · g (9)

In words:

“R-related inputs are mapped to S-related outputs”.

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

“Higher-order” squares

Because of their role in free theorems, these squares will be referred to as Reynolds
squares:

A

f

��

B

g

��

Roo

⊆

C D
S

oo

that is to say,

A B
Roo

C D
Soo

CA DBSR
oo

Thus one is lead to relational exponentials SR such that e.g.

(SR)◦ = (S◦)(R◦) (10)

id id = id (11)

etc. NB: We often write S ← R or R → S instead of SR when exponents get too
nested.

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

“Higher-order” squares

Because of their role in free theorems, these squares will be referred to as Reynolds
squares:

A

f

��

B

g

��

Roo

⊆

C D
S

oo

that is to say,

A B
Roo

C D
Soo

CA DBSR
oo

Thus one is lead to relational exponentials SR such that e.g.

(SR)◦ = (S◦)(R◦) (10)

id id = id (11)

etc. NB: We often write S ← R or R → S instead of SR when exponents get too
nested.

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

“Higher-order” squares

Functions-only Reynolds squares:

f (kh) g ⇔ f · h = k · g (12)

In case of h◦ instead of h,

f (kh◦) g ⇔ f · h◦ ⊆ k · g (13)

we get a higher-order function (via shunting + equality):

(kh◦) g = k · g · h (14)

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

“Higher-order” squares

Functions-only Reynolds squares:

f (kh) g ⇔ f · h = k · g (12)

In case of h◦ instead of h,

f (kh◦) g ⇔ f · h◦ ⊆ k · g (13)

we get a higher-order function (via shunting + equality):

(kh◦) g = k · g · h (14)

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

“Higher-order” squares
Then:

(id → k) g = k · g (15)

(h◦ → id) g = g · h (16)

cf. covariant and contravariant exponentials.

In fully pointfree notation, (15,16) become

k id = (k ·)
id (h◦) = (·h)

Then, by (10):

idh = (·h)◦ (17)

and so on and so forth.

R Rich construction!

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Higher-order Reynolds squares

Relational exponentials SR can involve other exponentials, for instance (SQ)
R

i.e.
R → SQ :

A

f

��

B

g

��

Roo

⊆

XC Y D

SQ
oo

f (R → SQ) g

Let us unfold this, assuming all fresh variables universally quantified:

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Higher-order Reynolds squares

f (R → SQ) g (18)

⇔ { Reynolds square (8) }

f · R ⊆ SQ · g
⇔ { shunting (4) followed by “nice rule” (7) }

a R b ⇒ (f a) SQ (g b)

⇔ { (8) again }

a R b ⇒ ((f a) · Q ⊆ S · (g b))

⇔ { (4) followed by (7) again }

a R b ⇒ c Q d ⇒ (f a c) S (g b d) (19)

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Relational types

Let f = g in Reynolds square (8):

A

f

��

A

f

��

Roo

⊆

C C
S

oo

f · R ⊆ S · f (20)

We often abbreviate f SR f to f : R → S , meaning that f has relational type R → S .

Note how type variables A and C in f : A→ C are straightforwardly replaced
by relations R and S in f : R → S.

R Types “are” relations (Voigtländer, 2019).

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Relational types by example

f : (6)→ (�) f is monotonic
A

f

��

A
(6)oo

f

��
⊆

B B
(�)

oo

f : (t0+)→ id f is periodic
R

f

��

R
(t0+)oo

f

��
⊆

B B
id

oo

f :> → id f is constant
A

f

��

A
>oo

f

��
⊆

B B
id

oo

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Category

Objects — binary relations R, S , ...

Morphisms — R
f // S as above (20)

R This category is named Rel2 in (Plotkin et al., 2000).

Relational type R → S corresponds to the homset Rel2 (R,S).

Rel2 is Cartesian closed, meaning that homset R → QS is, by uncurrying, isomorphic
to R × S → Q.

NB: “Tensor” product: (y , x) (R × S) (b, a)⇔ y R b ∧ x S a.

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Category

Objects — binary relations R, S , ...

Morphisms — R
f // S as above (20)

R This category is named Rel2 in (Plotkin et al., 2000).

Relational type R → S corresponds to the homset Rel2 (R,S).

Rel2 is Cartesian closed, meaning that homset R → QS is, by uncurrying, isomorphic
to R × S → Q.

NB: “Tensor” product: (y , x) (R × S) (b, a)⇔ y R b ∧ x S a.

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Free theorem squares

Let a parametric function f : F X → G X be given.

Its free theorem states that f has relational type

f : F R → G R (21)

for any R relating its parameters, as shown in the corresponding square:

F A

f

��

F B
F Roo

f

��
⊆

G A G B
G R
oo

This extends to multi-parametric f , as shown next.

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Free theorem squares

Example: Haskell constant function const : a→ b → a.

By (21), const has relational type R → RS , that is:

A

const

��

C

const

��

Roo

⊆

AB CD

RS
oo

const · R ⊆ RS · const (22)

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Free theorem squares

A

const

��

C
Roo

const

��
⊆

AB CD

RS
oo

R := id
-

A

const

��

A
idoo

const

��
⊆

AB AD

idS
oo

(9)

?

6

B

const a

��

D
Soo

const a

��
⊆

A A
id

oo

shunting
� -

B

id

��

D
Soo

const a

��
⊆

B A
(const a)◦
oo

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Free theorem squares

A

const

��

C
Roo

const

��
⊆

AB CD

RS
oo

R := id
-

A

const

��

A
idoo

const

��
⊆

AB AD

idS
oo

(9)

?

6

B

const a

��

D
Soo

const a

��
⊆

A A
id

oo

shunting
� -

B

id

��

D
Soo

const a

��
⊆

B A
(const a)◦
oo

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Free theorem squares

A

const

��

C
Roo

const

��
⊆

AB CD

RS
oo

R := id
-

A

const

��

A
idoo

const

��
⊆

AB AD

idS
oo

(9)

?

6

B

const a

��

D
Soo

const a

��
⊆

A A
id

oo

shunting
� -

B

id

��

D
Soo

const a

��
⊆

B A
(const a)◦
oo

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Free theorem squares

A

const

��

C
Roo

const

��
⊆

AB CD

RS
oo

R := id
-

A

const

��

A
idoo

const

��
⊆

AB AD

idS
oo

(9)

?

6

B

const a

��

D
Soo

const a

��
⊆

A A
id

oo

shunting
� -

B

id

��

D
Soo

const a

��
⊆

B A
(const a)◦
oo

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Free theorem squares

B

id

��

D
Soo

const a

��
⊆

B A
(const a)◦
oo

S ⊆ (const a)◦ · (const a)

So (const a)◦ · const a is the largest possible S , i.e. the top relation >:

(const a)◦ · (const a) = > (23)

Thus no other function can be less injective than const a.

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

On Injectivity

NB: injective functions are those that fit the square:

B

f ◦

��

A
foo

id

��
⊆

A A
id

oo

Path f ◦ · f is the kernel of f .

The kernel f ◦ · f of a function f tells how injective f is.

The larger the kernel the least injective the function is.

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Free theorem squares

B

const a

��

D
Soo

const a

��
⊆

A A
id

oo

S := h
-

B

const a

��

D
hoo

const a

��
=

A A
id

oo

const a · h = const a

A

const

��

C
Roo

const

��
⊆

AB CD

RS
oo

R, S := h, id
-

A

const

��

C
hoo

const

��
=

AB CD

hid
oo

h · (const c) = const (h c)

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Free theorem squares

B

const a

��

D
Soo

const a

��
⊆

A A
id

oo

S := h
-

B

const a

��

D
hoo

const a

��
=

A A
id

oo

const a · h = const a

A

const

��

C
Roo

const

��
⊆

AB CD

RS
oo

R, S := h, id
-

A

const

��

C
hoo

const

��
=

AB CD

hid
oo

h · (const c) = const (h c)

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Free theorem squares

B

const a

��

D
Soo

const a

��
⊆

A A
id

oo

S := h
-

B

const a

��

D
hoo

const a

��
=

A A
id

oo

const a · h = const a

A

const

��

C
Roo

const

��
⊆

AB CD

RS
oo

R, S := h, id
-

A

const

��

C
hoo

const

��
=

AB CD

hid
oo

h · (const c) = const (h c)

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Free theorem squares

B

const a

��

D
Soo

const a

��
⊆

A A
id

oo

S := h
-

B

const a

��

D
hoo

const a

��
=

A A
id

oo

const a · h = const a

A

const

��

C
Roo

const

��
⊆

AB CD

RS
oo

R, S := h, id
-

A

const

��

C
hoo

const

��
=

AB CD

hid
oo

h · (const c) = const (h c)

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Free theorem squares

Example:

flip :: (a→ b → c)→ b → a→ c (24)

Free theorem: flip : QSR → QRS
, i.e.

g (R → QS) f ⇒ (flip g) (S → QR) (flip f)

That is (where f
:

abbreviates flip f):

A

g

��

X

f

��

Roo

⊆

CB ZY

QS
oo

⇒

B

g:

��

Y

f
:

��

Soo

⊆

CA ZX

QR
oo

(25)

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Free theorem squares

For Q := id ,S := id and R := r (a function):

f (r → id) g ⇒ f
:

(id → id r) g:

⇔ { (12) ; (15) }

f · r = g ⇒ f
:
⊆ id r · g:

⇔ { id r = (·r)◦ (17) ; substitution of g ; shunting (4) }

(·r) · f
:

= f · r
:

This is the fusion-law of flipping — here obtained more directly than through an
adjunction as in e.g. (Oliveira, 2020).

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Free theorem squares

Since types are (higher-order) squares...

... “how much is in a type”?

Quite a lot.

As we shall see by handling the types of the following functions:

foldl :: Foldable t ⇒ (b → a→ b)→ b → t a→ b
foldr :: Foldable t ⇒ (a→ b → b)→ b → t a→ b

(26)

(Hackage’s Data.Foldable)

https://hackage.haskell.org/package/base-4.19.0.0/docs/Data-Foldable.html

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Free theorem squares

Since types are (higher-order) squares...

... “how much is in a type”?

Quite a lot.

As we shall see by handling the types of the following functions:

foldl :: Foldable t ⇒ (b → a→ b)→ b → t a→ b
foldr :: Foldable t ⇒ (a→ b → b)→ b → t a→ b

(26)

(Hackage’s Data.Foldable)

https://hackage.haskell.org/package/base-4.19.0.0/docs/Data-Foldable.html

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

foldl and foldr squares

Relational types (for T in the Foldable class):

foldl : (S → SR)→ (S → ST R) (27)

foldr : (R → SS)→ (S → ST R) (28)

As seen above:

• Two squares in each type.

• The left one is a pre-condition for the right one to hold.

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

foldl squares

The squares of

foldl : (S → SR)→ (S → ST R)

are:

B

g

��

Y

f

��

Soo

⊆

BA Y X

SR
oo

⇒

B

foldl g

��

Y

foldl f

��

Soo

⊆

BT A Y T X

ST R
oo

(29)

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

foldl squares

For R,S := id , h (hence X = A), both ST R and SR reduce to (h·) by T id = id and
(15).

So the squares become equalities:

B

g
��

Y

f
��

hoo

BA Y A

(h·)
oo

⇒

B

foldl g
��

Y

foldl f
��

hoo

BT A Y T A

(h·)
oo

Pointwise:

h (f y x) = g (h y) x ⇒ h (foldl f y xs) = foldl g (h y) xs

Fusion law of foldl proved in (Bird and Gibbons, 2020) for finite lists.

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

foldr

Repeating the above exercise for foldr (28):

A

g

��

X

f

��

Roo

⊆

BB Y Y

SS
oo

⇒

B

foldr g

��

Y

foldr f

��

Soo

⊆

BT A Y T X

ST R
oo

(30)

Same right square as in (29), but the side-condition square is different:

g · R ⊆ SS · f

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

foldr squares

For R,S := id , h we get

A

g ��

A

f��

idoo

BB Y Y

hh
oo

⇒

B

foldr g
��

Y

foldr f
��

hoo

BT A Y T A

(h·)
oo

where the side-condition square unfolds to:

g (id → hh) f

⇔ { (47) }

(g x) hh (f x)

⇔ { (12) }

(g x) · h = h · (f x)

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

foldr squares

Altogether, one has

B
g x
��

Y

f x��

hoo

B Y
h
oo

⇒

B

foldr g
��

Y

foldr f
��

hoo

BT A Y T A

(h·)
oo

that is:

(g x) · h = h · (f x) ⇒ foldr g · h = (h·) · foldr f (31)

i.e. the fully pointwise:

g x (h y) = h (f x y) ⇒ h (foldr f e xs) = foldr g (h e) xs (32)

foldr-fusion law proved in (Bird and Gibbons, 2020) for finite lists.

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Corollary of foldr-fusion

In (31), let f and g be the same function, say s, and let h := s a

B

s x
��

B

s x
��

s aoo

B Bs a
oo

⇒

B

foldr s
��

B

foldr s
��

s aoo

BT A BT A

(s a·)
oo

Then (31) becomes:

(s x) · (s a) = (s a) · (s x) ⇒ foldr s · (s a) = (s a·) · foldr s (33)

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Permutativity squares

Square

B

s x
��

B

s x
��

s aoo

B Bs a
oo

(34)

captures the (left) permutativity property of (Danvy, 2023):

(s x) · (s a) = (s a) · (s x) (35)

— i.e. the fully pointwise s x (s a y) = s a (s x y)

R If s is associative and commutative then it is permutative.

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Is foldl equal to foldr?

Looking at

foldl :: Foldable t ⇒ (b → a→ b)→ b → t a→ b
foldr :: Foldable t ⇒ (a→ b → b)→ b → t a→ b

the type-wise distance between foldr and foldl is the flip (24) of the first parameter.

So the “best fit” one can aim at is

foldl f
?
= foldr f

:
(36)

possibly valid for a (as wide as possible) class of functions f and instances of class
Foldable.

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

But... no law relating both

Free theorems only relate pairs of folds, e.g. in (32):

g x (h y) = h (f x y) ⇒ h (foldr f e xs) = foldr g (h e) xs

Perhaps a universal property could be found?

For this we need to get rid of one foldr.

One way is to assume that, for some α and γ,

foldr α γ = id (37)

holds. Then (f , e := α, γ):

g x (h y) = h (α x y) ⇒ h xs = foldr g (h γ) xs

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

But... no law relating both

Free theorems only relate pairs of folds, e.g. in (32):

g x (h y) = h (f x y) ⇒ h (foldr f e xs) = foldr g (h e) xs

Perhaps a universal property could be found?

For this we need to get rid of one foldr.

One way is to assume that, for some α and γ,

foldr α γ = id (37)

holds. Then (f , e := α, γ):

g x (h y) = h (α x y) ⇒ h xs = foldr g (h γ) xs

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Towards foldr-universal

Let us introduce z = h γ and drop xs:{
h γ = z
h (α x y) = g x (h y)

⇒ h = foldr g z (38)

So, foldr g z is the unique solution for h of the equations:{
h γ = z
h (α x y) = g x (h y)

By substituting this solution in the equations we get a definition for foldr:

{
foldr g z γ = z
foldr g z (α x y) = g x (foldr g z y)

(39)

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Towards foldr-universal

Moreover, this definition is mathematically equivalent to (just replace h by foldr g z
and simplify):

h = foldr g z ⇒
{

h γ = z
h (α x y) = g x (h y)

(40)

Altogether, (38) and (40) make up a universal property:

h = foldr g z ⇔
{

h γ = z
h (α x xs) = g x (h xs)

(41)

(For lists, we can easily identify γ = [] and α x xs = x : xs.)

What about foldl?

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Wikipedia

https://en.wikipedia.org/wiki/Fold_(higher-order_function)

https://en.wikipedia.org/wiki/Fold_(higher-order_function)

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Wikipedia

That is,

foldl f
:

= foldr (λx k → k · f
:

x) id (42)

or

foldl f
:

= foldr (θ f) id (43)

where (θ f) x k = k · (f
:

x)

cf. the (functional) square

BB

(·k)
��

A
θ foo

f
:
��

BB BB

(k·)
oo

(44)

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Universal-foldl

An advantage of defining foldl “as a foldr” (43) is that the universal property of the
latter induces the universal property of the former:

k = foldl f

⇔ { foldl f = foldr (θ f) id
:

(43) ; flipping }

k
:

= foldr (θ f) id

⇔ { universal-foldr (41) etc }{
k
:
γ = id

k
:

(α x xs) = (θ f) x (k
:

xs)

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Universal-foldl

⇔ { introduce z and flip }{
k z γ = z

k z (α x xs) = (θ f) x (k
:

xs) z

⇔ { square (44) — (θ f) x g = g · (f
:
x) }{

k z γ = z

k z (α x xs) = k
:

xs (f z x)

⇔ { flipping }{
k z γ = z
k z (α x xs) = k (f z x) xs

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Universal-foldl

Thus we get the universal-property of foldl:

k = foldl f ⇔
{

k z γ = z
k z (α x xs) = k (f z x) xs

(45)

Good — we already know something about foldl and foldr

But question (36) remains:

Under what conditions does foldl f = foldr f
:

hold?

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Universal-foldl

Thus we get the universal-property of foldl:

k = foldl f ⇔
{

k z γ = z
k z (α x xs) = k (f z x) xs

(45)

Good — we already know something about foldl and foldr

But question (36) remains:

Under what conditions does foldl f = foldr f
:

hold?

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Universal-foldl

Thus we get the universal-property of foldl:

k = foldl f ⇔
{

k z γ = z
k z (α x xs) = k (f z x) xs

(45)

Good — we already know something about foldl and foldr

But question (36) remains:

Under what conditions does foldl f = foldr f
:

hold?

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Equating foldl and foldr

A popular assumption is that foldl f e and foldr f
:

e compute the same output for f
associative and e its unit, see e.g. exercise 1.10 of (Bird and Gibbons, 2020).

However, we have that, for instance (÷ is div),

foldl (÷) 100000 [99, 2, 7] = 72 = foldr (÷:) 100000 [99, 2, 7]

foldl (÷) 10000 [99, 2, 7] = 7 = foldr (÷:) 10000 [99, 2, 7]

and yet

• neither (÷) nor (÷:) are associative

• the other parameter can be any number.

How do we explain this and similar examples?

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Equating foldl and foldr

A popular assumption is that foldl f e and foldr f
:

e compute the same output for f
associative and e its unit, see e.g. exercise 1.10 of (Bird and Gibbons, 2020).

However, we have that, for instance (÷ is div),

foldl (÷) 100000 [99, 2, 7] = 72 = foldr (÷:) 100000 [99, 2, 7]

foldl (÷) 10000 [99, 2, 7] = 7 = foldr (÷:) 10000 [99, 2, 7]

and yet

• neither (÷) nor (÷:) are associative

• the other parameter can be any number.

How do we explain this and similar examples?

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Equating foldl and foldr

We can use foldl-universal (45) to find an answer:

foldl f = foldr f
:

⇔ { universal property (45) }{
foldr f

:
z γ = z

foldr f
:

z (α x xs) = foldr f
:

(f z x) xs

⇔ { flipping f z x }{
foldr f

:
z γ = z

foldr f
:

z (α x xs) = foldr f
:

(f
:

x z) xs

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Back to the permutativity squares

Recall (33)

B

s a
��

B

s a
��

s xoo

B Bs x
oo

⇒

B

foldr s
��

B

foldr s
��

s xoo

BT A BT A

(s x ·)
oo

which, for s := f
:

, becomes

B

f
:
a
��

B

f
:
a
��

f
:
xoo

B B
f
:
x

oo

⇒

B

foldr f
:
��

B

foldr f
:

��

f
:
xoo

BT A BT A

(f
:
x ·)

oo

This suits us because permuting foldr f
:

with f
:

x will be useful. Let us see why:

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Equating foldl and foldr

{
foldr f

:
z γ = z

foldr f
:

z (α x xs) = foldr f
:

(f
:

x z) xs

⇔ { (33) assuming permutativity: (f
:
x) · (f

:
a) = (f

:
a) · (f

:
x) }{

foldr f
:

z γ = z

foldr f
:

z (α x xs) = f
:

x (foldr f
:

z xs)

⇔ { definition of foldr (39) }

True

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Conclusion

We conclude that foldl f = foldr f
:

holds for the instances of class Foldable such that
foldr α γ = id for some α and γ (37), provided that f

:
is permutative.

Back to e.g.

foldl (÷) 100000 [99, 2, 7] = 72 = foldr (÷:) 100000 [99, 2, 7]

foldl (÷) 10000 [99, 2, 7] = 7 = foldr (÷:) 10000 [99, 2, 7]

how can we be sure (÷:) is permutative?

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Galois connection squares

The specification of x ÷ y is a Galois connection:

A

(×y)◦

��

A

(÷y)
��

(6)oo

=

B B
(6)
oo

a× y 6 x ⇔ a 6 x ÷ y (46)

We can use (46) and indirect equality over (6) to prove

(÷: a) · (÷: b) = (÷: b) · (÷: a)

that is:

(x ÷ b)÷ a = (x ÷ a)÷ b

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Never underestimate indirect equality

y 6 (x ÷ b)÷ a

⇔ { Galois connection (46) twice }

(y × a)× b 6 x

⇔ { (×) is associative and commutative }

(y × b)× a 6 x

⇔ { Galois connection (46) twice in the opposite direction }

y 6 (x ÷ a)÷ b

:: { by indirect equality (Dijkstra, 2001) }

(x ÷ b) a = (x ÷ a)÷ b

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Comments

Knowing that permutativity is enough for foldr/foldl “equality” is not new — see e.g.
(Danvy, 2023).

Danvy’s reasoning is, however, quite different: permutativity is postulated as side
condition and then proved in Coq by list induction.

R Above, permutativity arose (generically) by free-theorem calculation.

Moreover, it was shown that a commutative + associative lower adjoint f in f a g
ensures a permutative g , widening Olivier Danvy’s result.

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Summary

• Simplicity (eventually) wins

R “Magic” squares

• Widening scope (usually) helps

R (Binary) relations!

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Summary

• Simplicity (eventually) wins

R “Magic” squares

• Widening scope (usually) helps

R (Binary) relations!

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

FPCA 1989

“From the type of a polymorphic function we
can derive a theorem that it satisfies. (...)
How useful are the theorems so generated?

Only time and experience will tell (...)”

Indeed — many years later, experience is still
telling us how useful such a fantastic result is!

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Acknowledgements

This work is funded by national funds through
FCT – Fundação para a Ciência e a Tecnologia, I.P.,

under the support UID/50014/2023
(https://doi.org/10.54499/UID/50014/2023)

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Annex

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Permutativity matters

Insertion

insert :: Ord a⇒ a→ [a]→ [a]

on a linearly ordered list is a permutative operation.

Thus insertion sort

foldr insert []

computes the same as

foldl insert
:

[].

This is assumed in the example of (Gibbons, 1996).

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Permutativity matters

Diffie-Hellman key exchange (Merkle, 1978)1:

(+red) · (+cyan) = (+cyan) · (+red)

1Source: Wikipedia

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Pointwise ordering squares
Let R := id , S := (6):

A

f

��

A

g

��

idoo

⊆

C D
(6)

oo

f ⊆ (6) · g

This square captures the (6)-pointwise-ordering of functions:

f (6)id g ⇔ 〈∀ a :: f a 6 g a〉 (47)

In words:

“The same input is mapped to (6)-related outputs”.

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Logical relation squares

Let f , g := α, β in a Reynolds
square, where α and β are
F-algebras:

F A

α

��

F B
F Roo

β

��
⊆

A B
R

oo

In a succint way, the square
tells that R is a logical
relation from α to β.

Compare with:

(Plotkin et al. (2000) ’Lax Logical Relations’,
ICALP 2000: 85-102)

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Algebraic squares

In case R is a function h (R := h),

F A

α

��

F B
F hoo

β

��
=

B A
h

oo

the square means

α · F h = h · β

by (6) and h is said to be a F-homomorphism.

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Coalgebraic squares

Let f , g := γ, φ in a Reynolds square, where γ and φ are F-coalgebras:

A

γ

��

B
Roo

φ

��
⊆

F A F B
F R

oo

R is said to be a bisimulation between the two coalgebras, meaning:

〈∀ a, b : a R b : (γ a) (F R) (φ b)〉

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Hoare triple squares

Let Φp : A→ A be such that b Φp a⇔ b = a ∧ p a in:

A

f

��

A
Φpoo

f

��
⊆

B B
Φq

oo

This square captures the Hoare triple:

〈∀ a :: p a⇒ q (f a)〉

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Big-O squares

Define

y 6C x ⇔ y 6 C x

for some scalar C , in:

N0

f

��

N0

Φ(>n0)oo

g

��
⊆

R R
6C

oo

Meaning:

〈∀ n :: n > n0 ⇒ f n 6 C g n〉

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Checking that (43) defines foldl
We unfold (43) via universal property (41):

foldl f
:

= foldr (θ f) id

⇔ { universal-foldr (41) }{
foldl f
:

γ = id

foldl f
:

(α x xs) z = (θ f) x (foldl f
:

xs)

⇔ { definition of θ (44) }{
foldl f
:

γ = id

foldl f
:

(α x xs) = foldl f
:

xs (f
:

x z)

⇔ { go pointwise on z and unfold the flips }{
foldl f z γ = z
foldl f z (α x xs) = foldl f (f z x) xs

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

On relational exponentials SR

By vertical composition (1) one immediately infers:{
R ′ ⊆ R
S ⊆ S ′

⇒ SR ⊆ S ′
R′

We also know that id id = id (11).

By horizontal composition (2) we get

SR · S ′R
′

⊆ (S · S ′)(R·R′)
(48)

However, the converse inclusion does not hold and so relational exponentiation is not in general
a (bi)relator — in a sense, it can be regarded as a “lax (bi)relator.

Backhouse and Backhouse (2004) give conditions for strengthening (48) to an equality that
include the cases involving functions and converses of functions used above.

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Data.Foldable

instance Foldable M where
foldMap = maybe mempty

foldr z Nothing = z
foldr f z (Just x) = f x z

foldl z Nothing = z
foldl f z (Just x) = f z x

Let α x = Just x and γ = Nothing and unfold foldr α γ:

foldr α Nothing Nothing = Nothing
foldr α Nothing (Just x) = α x z = Just x

So foldr α γ = id .

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

References

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

K. Backhouse and R.C. Backhouse. Safety of abstract interpretations for free, via
logical relations and Galois connections. SCP, 15(1–2):153–196, 2004.

R. Bird and J. Gibbons. Algorithm Design with Haskell. Cambridge University Press,
2020.

O. Danvy. Folding left and right matters: Direct style, accumulators, and
continuations. Journal of Functional Programming, 33:e2, 2023.

E.W. Dijkstra. Indirect equality enriched, 2001. Technical note EWD 1315-0.

P.J. Freyd and A. Scedrov. Categories, Allegories, volume 39 of Mathematical Library.
North-Holland, 1990. ISBN: 9780444703682.

J. Gibbons. The third homomorphism theorem. J. Funct. Program., 6(4):657–665,
1996. doi: 10.1017/S0956796800001908. URL
https://doi.org/10.1017/S0956796800001908.

R.C. Merkle. Secure communications over insecure channels. Commun. ACM, 21(4):
294–299, 1978.

J.N. Oliveira. A note on the under-appreciated for-loop. Technical Report
TR-HASLab:01:2020 (pdf), HASLab/U.Minho and INESC TEC, 2020.

https://www.cs.utexas.edu/users/EWD/ewd13xx/EWD1315.PDF
https://doi.org/10.1017/S0956796800001908
https://www.di.uminho.pt/~jno/ps/haslabtr202010.pdf

Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

G. Plotkin, J. Power, D. Sannella, and R. Tennent. Lax logical relations. In Ugo
Montanari, José D. P. Rolim, and Emo Welzl, editors, Automata, Languages and
Programming, pages 85–102, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

J.C. Reynolds. Types, abstraction and parametric polymorphism. Information
Processing 83, pages 513–523, 1983.

J. Voigtländer. Free theorems simply, via dinaturality, 2019. arXiv cs.PL 1908.07776.

P.L. Wadler. Theorems for free! In 4th Int. Symp. on Functional Programming
Languages and Computer Architecture, pages 347–359, London, Sep. 1989. ACM.

	Motivation
	Squares
	Reynolds squares
	Free theorem squares
	Folds
	Acknowledgements

