How much is in a square? Calculating functional programs with squares

JFP journal-first paper

ICFP 2025 — Singapore, 15 October 2025

J.N. Oliveira

Univ. Minho & Inesc Tec (Portugal)

Summary of the talk

- Simplicity (eventually) wins
- Widening scope (usually) helps

Summary of the talk

- Simplicity (eventually) wins
- Widening scope (usually) helps

Simplicity (eventually) wins

"Simplicity does not precede complexity, but follows it."

(Edsger Dijkstra)

Widening context helps

Complex exponentials can simplify trigonometry, because they are mathematically easier to manipulate than their sine and cosine components. One technique is simply to convert sines and cosines into equivalent expressions in terms of exponentials sometimes called *complex sinusoids*.^[13]

After the manipulations, the simplified result is still real-valued. For example:

$$\cos x \cos y = \frac{e^{ix} + e^{-ix}}{2} \cdot \frac{e^{iy} + e^{-iy}}{2}$$

$$= \frac{1}{2} \cdot \frac{e^{i(x+y)} + e^{i(x-y)} + e^{i(-x+y)} + e^{i(-x-y)}}{2}$$

$$= \frac{1}{2} \left(\frac{e^{i(x+y)} + e^{-i(x+y)}}{2} + \frac{e^{i(x-y)} + e^{-i(x-y)}}{2} \right)$$

$$= \frac{1}{2} \left(\cos(x+y) + \cos(x-y) \right).$$

(Ref: Wikipedia → Euler's formula)

Freyd & Ščedrov, 1990

"(...) A special feature of our approach is a general **calculus of relations** presented in part two.

This calculus offers another, often more amenable framework for concepts and methods discussed in part one." NORTH-HOLLAND MATHEMATICAL LIBRARY

Categories Allegories

PETER J. FREYD

Freyd & Ščedrov, 1990

"(...) A special feature of our approach is a general **calculus of relations** presented in part two.

This calculus offers another, **often more amenable** framework for concepts and methods discussed in part one."

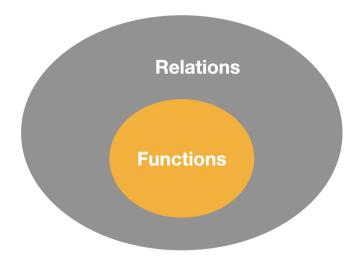
NORTH-HOLLAND MATHEMATICAL LIBRARY

Categories Allegories

PETER J. FREYD

Functions

$\mathsf{Functions} \subseteq \mathsf{Relations}$



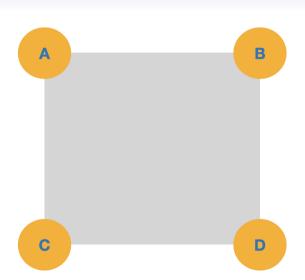
Braga, June 2003

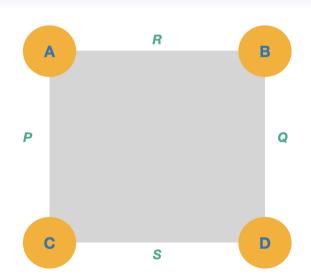
JNO - "(...) What I find lacking in functional programming practice is formal specification..."

SPJ - "But, types are... the formal specifications, aren't they?"

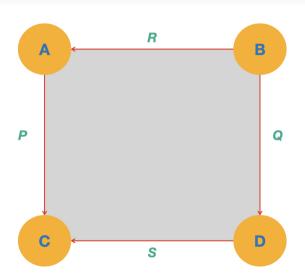
It took me 20+ years to fully appreciate this answer!

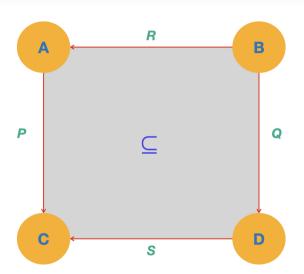
Squares



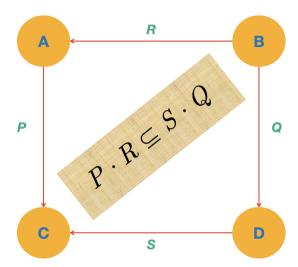


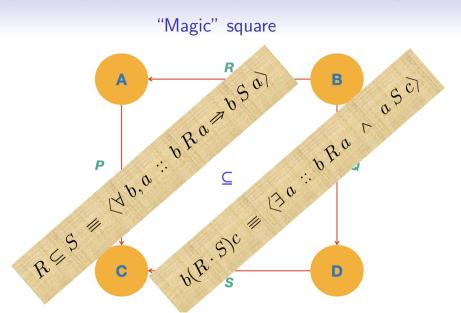
Reynolds squares





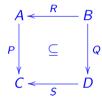
"Magic" square





"Magic" square

Pointfree:

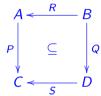


$$P \cdot R \subseteq S \cdot Q$$

Pointwise:

"Magic" square

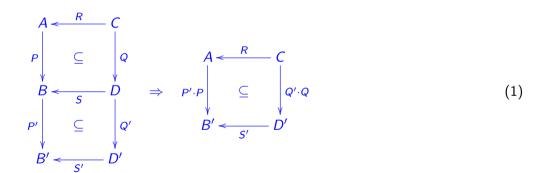
Pointfree:



$$P \cdot R \subseteq S \cdot Q$$

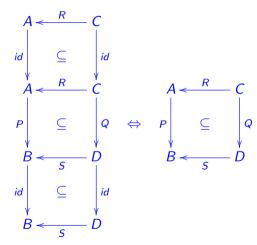
Pointwise:

Vertical composition



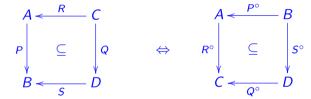
Horizontal composition

Identity



(Similarly for horizontal.)

Converse



The **converse** of a square is its "passive voice"

 $x R^{\circ} y \Leftrightarrow y R x$

Functorial squares

Functor **F**:

F should be monotonic and preserve converses — a relator (Freyd and Scedrov, 1990).

Some relations f fit into the following squares:

Left square:
$$\langle \forall a :: \langle \exists b :: b f a \rangle \rangle$$
 f is **total**

Right square:
$$(\forall b, b' :: (\exists a :: b f a \land b' f a) \Rightarrow (b = b'))$$

is univocal.

Such relations f are called **functions**.

Some relations f fit into the following squares:

Right square: $\langle \forall b, b' :: \langle \exists a :: b f a \wedge b' f a \rangle \Rightarrow (b = b') \rangle$

is univocal.

Such relations f are called **functions**.

Some relations f fit into the following squares:

Right square: $\langle \forall b, b' :: \langle \exists a :: b f a \wedge b' f a \rangle \Rightarrow (b = b') \rangle$

f is univocal.

Such relations f are called functions

Some relations f fit into the following squares:

Right square: $\langle \forall b, b' :: \langle \exists a :: b f a \wedge b' f a \rangle \Rightarrow (b = b') \rangle$

f is univocal.

Such relations f are called functions.

Let f be a **function**. Then:

This is the **shunting** rule:

$$f \cdot R \subseteq Q \quad \Leftrightarrow \quad R \subseteq f^{\circ} \cdot Q \tag{4}$$

Taking converses

$$R \cdot f^{\circ} \subseteq Q \Leftrightarrow R \subseteq Q \cdot f$$
 (5)

Let f be a **function**. Then:

This is the **shunting** rule:

$$f \cdot R \subseteq Q \Leftrightarrow R \subseteq f^{\circ} \cdot Q \tag{4}$$

Taking converses:

$$R \cdot f^{\circ} \subseteq Q \quad \Leftrightarrow \quad R \subseteq Q \cdot f \tag{5}$$

"Nice" rules about functions

Functional equality:

$$f \subseteq g \Leftrightarrow f = g \Leftrightarrow g \subseteq f \tag{6}$$

∃-quantifiers go away

$$b(f^{\circ} \cdot R \cdot g) a \Leftrightarrow (f b) R(g a)$$
 (7)

$$B \xrightarrow{f} C \xleftarrow{R} D \xleftarrow{g}$$

"Nice" rules about functions

Functional **equality**:

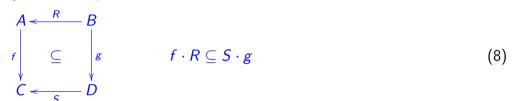
$$f \subseteq g \Leftrightarrow f = g \Leftrightarrow g \subseteq f \tag{6}$$

∃-quantifiers go away:

$$b(f^{\circ} \cdot R \cdot g) a \Leftrightarrow (f b) R(g a)$$
 (7)

$$B \xrightarrow{f} C \xleftarrow{R} D \xleftarrow{g} A$$

A very common square with two functions:



This square captures a higher-order relation on functions

$$f S^R g \Leftrightarrow f \cdot R \subseteq S \cdot g \tag{9}$$

In words

"R-related inputs are mapped to S-related outputs"

A very common square with two **functions**:

$$\begin{array}{ccc}
A & \xrightarrow{R} & B \\
f \downarrow & \subseteq & \downarrow g \\
C & \longleftarrow & D
\end{array} \qquad f \cdot R \subseteq S \cdot g \qquad (8)$$

This square captures a **higher-order relation** on functions:

$$f S^R g \Leftrightarrow f \cdot R \subseteq S \cdot g \tag{9}$$

In words:

"R-related inputs are mapped to S-related outputs".

"Higher-order" squares

Because of their role in **free theorems**, these squares will be referred to as **Reynolds squares**:

$$A \stackrel{R}{\longleftarrow} B$$

$$f \downarrow \subseteq \qquad \downarrow g \quad \text{that is to say,} \qquad A \stackrel{R}{\longleftarrow} B$$

$$C \stackrel{S}{\longleftarrow} D$$

$$C^{A} \stackrel{S^{R}}{\longleftarrow} D^{B}$$

Thus one is lead to **relational exponentials** S^R such that e.g.

$$(S^R)^\circ = (S^\circ)^{(R^\circ)} \tag{10}$$

$$id^{id} = id (11)$$

etc. **NB**: We often write $S \leftarrow R$ or $R \rightarrow S$ instead of S^R when exponents get too nested

"Higher-order" squares

Because of their role in **free theorems**, these squares will be referred to as **Reynolds squares**:

$$A \stackrel{R}{\longleftarrow} B$$

$$f \qquad \subseteq \qquad g \quad \text{that is to say,} \qquad A \stackrel{R}{\longleftarrow} B$$

$$C \stackrel{S}{\longleftarrow} D$$

$$C \stackrel{S}{\longleftarrow} D$$

$$C \stackrel{S}{\longleftarrow} D$$

Thus one is lead to **relational exponentials** S^R such that e.g.

$$(S^R)^{\circ} = (S^{\circ})^{(R^{\circ})} \tag{10}$$

$$id^{id} = id (11)$$

etc. **NB**: We often write $S \leftarrow R$ or $R \rightarrow S$ instead of S^R when exponents get too nested.

"Higher-order" squares

Functions-only Reynolds squares:

$$f(k^h) g \Leftrightarrow f \cdot h = k \cdot g \tag{12}$$

In case of h° instead of h

$$f(k^{h^{\circ}}) g \Leftrightarrow f \cdot h^{\circ} \subseteq k \cdot g \tag{13}$$

we get a **higher-order function** (via shunting + equality)

$$(k^{h^{\circ}}) g = k \cdot g \cdot h \tag{14}$$

"Higher-order" squares

Functions-only Reynolds squares:

$$f(k^h) g \Leftrightarrow f \cdot h = k \cdot g \tag{12}$$

In case of h° instead of h,

$$f(k^{h^{\circ}}) g \Leftrightarrow f \cdot h^{\circ} \subseteq k \cdot g \tag{13}$$

we get a **higher-order function** (via shunting + equality):

$$(k^{h^{\circ}}) g = k \cdot g \cdot h \tag{14}$$

"Higher-order" squares

Then:

$$(id \to k) g = k \cdot g \tag{15}$$

$$(h^{\circ} \to id) g = g \cdot h \tag{16}$$

cf. covariant and contravariant exponentials.

In fully pointfree notation, (15,16) become

$$k^{id} = (k \cdot)$$

 $id^{(h^{\circ})} = (\cdot h)$

Then, by (10):

$$id^h = (\cdot h)^{\circ} \tag{17}$$

and so on and so forth.

Higher-order Reynolds squares

Relational exponentials S^R can involve other exponentials, for instance $(S^Q)^R$ i.e. $R \to S^Q$:

Let us unfold this, assuming all fresh variables universally quantified:

Higher-order Reynolds squares

$$f(R \to S^Q) g \qquad (18)$$

$$\Leftrightarrow \qquad \{ \text{ Reynolds square (8)} \}$$

$$f \cdot R \subseteq S^Q \cdot g \qquad \qquad \{ \text{ shunting (4) followed by "nice rule" (7)} \}$$

$$a R b \Rightarrow (f a) S^Q (g b) \qquad \qquad \qquad \{ (8) \text{ again } \}$$

$$a R b \Rightarrow ((f a) \cdot Q \subseteq S \cdot (g b))$$

$$\Leftrightarrow \qquad \{ (4) \text{ followed by (7) again } \}$$

$$a R b \Rightarrow c Q d \Rightarrow (f a c) S (g b d) \qquad (19)$$

Relational types

Let f = g in Reynolds square (8):

$$\begin{array}{ccc}
A & \stackrel{R}{\longleftarrow} & A \\
f \downarrow & \subseteq & \downarrow f & f \cdot R \subseteq S \cdot f \\
C & \stackrel{C}{\longleftarrow} & C
\end{array} \tag{20}$$

We often abbreviate $f S^R f$ to $f : R \to S$, meaning that f has relational type $R \to S$.

Note how type variables A and C in $f: A \to C$ are straightforwardly replaced by relations R and S in $f: R \to S$.

Types "are" relations (Voigtländer, 2019).

Relational types by example

$$f: (\leqslant) \rightarrow (\preceq)$$

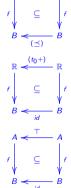
f is monotonic

$$f:(t_0+)\to id$$

f is periodic

$$f: \top \rightarrow id$$

f is constant



Category

Objects — binary relations *R*, *S*, ...

Morphisms — $R \xrightarrow{f} S$ as above (20)

This category is named Rel_2 in (Plotkin et al., 2000).

Relational type $R \to S$ corresponds to the homset $Rel_2(R, S)$.

 Rel_2 is Cartesian closed, meaning that homset $R \to Q^S$ is, by uncurrying, isomorphic to $R \times S \to Q$.

NB: "Tensor" product: (y,x) $(R \times S)$ $(b,a) \Leftrightarrow y R b \wedge x S a$.

Category

Objects — binary relations *R*, *S*, ...

Morphisms — $R \xrightarrow{f} S$ as above (20)

This category is named Rel_2 in (Plotkin et al., 2000).

Relational type $R \to S$ corresponds to the homset Rel_2 (R, S).

 Rel_2 is Cartesian closed, meaning that homset $R \to Q^S$ is, by uncurrying, isomorphic to $R \times S \to Q$.

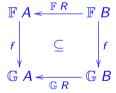
NB: "Tensor" product: (y, x) $(R \times S)$ $(b, a) \Leftrightarrow y R b \wedge x S a$.

Let a parametric function $f : \mathbb{F} X \to \mathbb{G} X$ be given.

Its free theorem states that f has relational type

$$f: \mathbb{F} R \to \mathbb{G} R \tag{21}$$

for any R relating its parameters, as shown in the corresponding square:

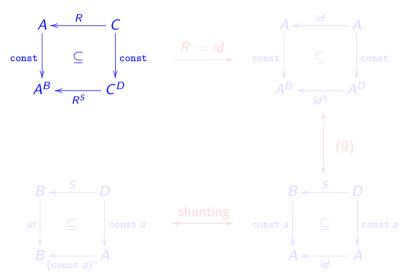


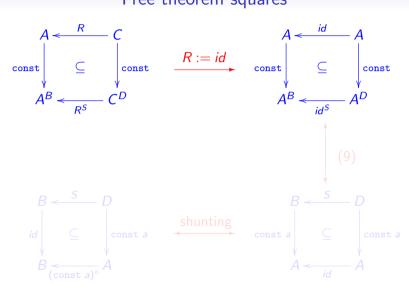
This extends to multi-parametric f, as shown next.

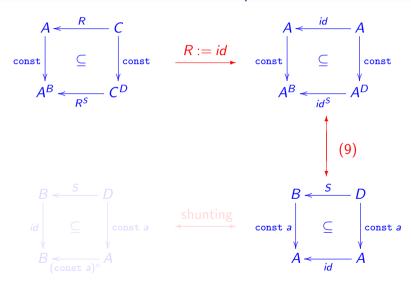
Example: Haskell constant function const : $a \rightarrow b \rightarrow a$.

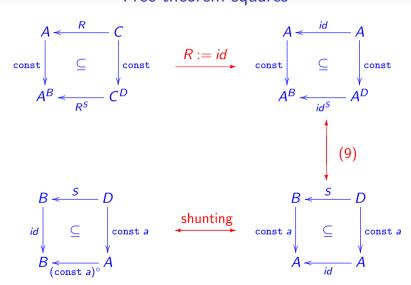
By (21), const has relational type $R \to R^S$, that is:

$$\begin{array}{ccc}
A & \stackrel{R}{\longleftarrow} & C \\
\text{const} & \subseteq & \downarrow \text{const} & \text{const} \cdot R \subseteq R^S \cdot \text{const} \\
A^B & \stackrel{R^S}{\longleftarrow} & C^D
\end{array} \tag{22}$$









$$B \xleftarrow{S} D \qquad S \subseteq (\text{const } a)^{\circ} \cdot (\text{const } a)$$

$$id \downarrow \qquad \qquad \downarrow \text{const } a$$

$$B \xleftarrow{\text{(const } a)^{\circ}} A$$

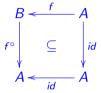
So $(const a)^{\circ} \cdot const a$ is the largest possible S, i.e. the **top relation** T:

$$(\operatorname{const} a)^{\circ} \cdot (\operatorname{const} a) = \top \tag{23}$$

Thus no other function can be **less injective** than const a.

On Injectivity

NB: injective functions are those that fit the square:



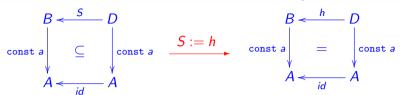
Path $f^{\circ} \cdot f$ is the **kernel** of f.

The kernel $f^{\circ} \cdot f$ of a function f tells how **injective** f is.

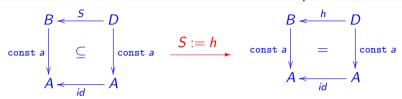
The larger the kernel the **least injective** the function is.

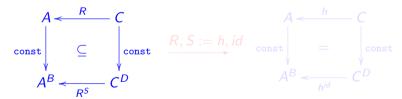


$$h \cdot (\text{const } c) = \text{const } (h c)$$

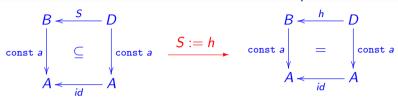


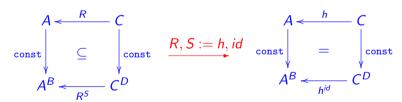
$$h \cdot (\text{const } c) = \text{const } (h c)$$





$$h \cdot (\text{const } c) = \text{const } (h c)$$





$$h \cdot (\text{const } c) = \text{const } (h c)$$

Example:

flip::
$$(a \rightarrow b \rightarrow c) \rightarrow b \rightarrow a \rightarrow c$$
 (24)

Free theorem: flip:
$$Q^{SR} o Q^{RS}$$
, i.e. $g(R o Q^S) f \Rightarrow (\text{flip } g) (S o Q^R) (\text{flip } f)$

That is (where \tilde{f} abbreviates flip f):

$$\begin{array}{cccc}
A & \xrightarrow{R} & X & B & \xrightarrow{S} & Y \\
\downarrow g & \subseteq & \downarrow_f & \Rightarrow & g & \subseteq & \downarrow_{\widetilde{f}} \\
C^B & \xrightarrow{Q^S} & Z^Y & C^A & \xrightarrow{Q^R} & Z^X
\end{array} \tag{25}$$

For Q := id, S := id and R := r (a function):

$$f(r \to id) g \Rightarrow \widetilde{f}(id \to id^r) \widetilde{g}$$

$$\Leftrightarrow \qquad \{ (12) ; (15) \}$$

$$f \cdot r = g \Rightarrow \widetilde{f} \subseteq id^r \cdot \widetilde{g}$$

$$\Leftrightarrow \qquad \{ id^r = (\cdot r)^\circ (17) ; \text{substitution of } g; \text{shunting } (4) \}$$

$$(\cdot r) \cdot \widetilde{f} = \widetilde{f \cdot r}$$

This is the **fusion-law** of *flipping* — here obtained more directly than through an **adjunction** as in e.g. (Oliveira, 2020).

Since **types** are (higher-order) **squares**...

... "how much is in a type"?

Quite a lot

As we shall see by handling the types of the following functions

foldl :: Foldable
$$t \Rightarrow (b \rightarrow a \rightarrow b) \rightarrow b \rightarrow t \ a \rightarrow b$$

foldr :: Foldable $t \Rightarrow (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow t \ a \rightarrow b$

(Hackage's Data.Foldable)

Since **types** are (higher-order) **squares**...

... "how much is in a type"?

Quite a lot.

As we shall see by handling the types of the following functions:

foldl :: Foldable
$$t \Rightarrow (b \rightarrow a \rightarrow b) \rightarrow b \rightarrow t \ a \rightarrow b$$

foldr :: Foldable $t \Rightarrow (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow t \ a \rightarrow b$ (26)

(Hackage's Data.Foldable)

foldl and foldr squares

Relational types (for \mathbb{T} in the **Foldable** class):

$$\mathbf{foldl}: (S \to S^R) \to (S \to S^{\mathbb{T} R}) \tag{27}$$

$$\mathbf{foldr}: (R \to S^S) \to (S \to S^{\mathbb{T} R}) \tag{28}$$

As seen above:

- Two squares in each type.
- The left one is a pre-condition for the right one to hold.

foldI squares

The squares of

$$\mathbf{foldl}: (S \to S^R) \to (S \to S^{\mathbb{T}\ R})$$

are:

$$B \xleftarrow{S} Y \qquad B \xleftarrow{S} Y$$

$$g \downarrow \subseteq \downarrow f \Rightarrow \text{ foldl } g \downarrow \subseteq \downarrow \text{ foldl } f$$

$$B^{A} \xleftarrow{S^{R}} Y^{X} \qquad B^{\mathbb{T} A} \xleftarrow{C^{\mathbb{T} R}} Y^{\mathbb{T} X}$$

(29)

foldI squares

For R, S := id, h (hence X = A), both $S^{\mathbb{T} R}$ and S^R reduce to $(h \cdot)$ by $\mathbb{T} id = id$ and (15).

So the squares become equalities:

$$B \stackrel{h}{\leftarrow} Y$$

$$g \downarrow \qquad \qquad \downarrow f \qquad \Rightarrow \qquad \text{foldl } g \downarrow \qquad \qquad \downarrow \text{foldl } f$$

$$B^{A} \stackrel{h}{\leftarrow} Y^{A} \qquad \qquad B^{\mathbb{T} A} \stackrel{h}{\leftarrow} Y^{\mathbb{T} A}$$

Pointwise:

$$h(f y x) = g(h y) x \Rightarrow h(foldl f y xs) = foldl g(h y) xs$$

Fusion law of foldl proved in (Bird and Gibbons, 2020) for finite lists.

foldr

Repeating the above exercise for foldr (28):

Same right square as in (29), but the side-condition square is different:

$$g \cdot R \subset S^S \cdot f$$

foldr squares

For R, S := id, h we get

where the side-condition square unfolds to:

$$g (id \rightarrow h^{h}) f$$

$$\Leftrightarrow \qquad \{ (47) \}$$

$$(g x) h^{h} (f x)$$

$$\Leftrightarrow \qquad \{ (12) \}$$

$$(g x) \cdot h = h \cdot (f x)$$

foldr squares

Altogether, one has

$$\begin{array}{cccc}
B & \stackrel{h}{\longleftarrow} Y \\
g \times \downarrow & \downarrow f \times & \Rightarrow & \text{foldr } g \downarrow & \downarrow & \text{foldr } f \\
B & \stackrel{h}{\longleftarrow} Y & & & B^{\mathbb{T} A} & \stackrel{(h \cdot)}{\longleftarrow} Y^{\mathbb{T} A}
\end{array}$$

that is:

$$(g \times) \cdot h = h \cdot (f \times) \Rightarrow \text{foldr } g \cdot h = (h \cdot) \cdot \text{foldr } f$$
 (31)

i.e. the fully pointwise:

$$g \times (h y) = h (f \times y) \Rightarrow h (\text{foldr } f \in xs) = \text{foldr } g (h \in xs$$

foldr-fusion law proved in (Bird and Gibbons, 2020) for finite lists.

Corollary of foldr-fusion

In (31), let f and g be the same function, say s, and let h := s a

Then (31) becomes:

$$(s x) \cdot (s a) = (s a) \cdot (s x) \Rightarrow \mathbf{foldr} \ s \cdot (s a) = (s a) \cdot \mathbf{foldr} \ s$$
 (33)

Permutativity squares

Square

$$\begin{array}{ccc}
B \stackrel{5a}{\leftarrow} B \\
s \times \downarrow & \downarrow s \times \\
B \stackrel{c}{\leftarrow} B
\end{array} \tag{34}$$

captures the (left) permutativity property of (Danvy, 2023):

$$(s x) \cdot (s a) = (s a) \cdot (s x) \tag{35}$$

— i.e. the fully pointwise $s \times (s \ a \ y) = s \ a \ (s \times y)$

If s is associative and commutative then it is permutative.

Is **foldI** equal to **foldr**?

Looking at

foldl :: Foldable
$$t \Rightarrow (b \rightarrow a \rightarrow b) \rightarrow b \rightarrow t \ a \rightarrow b$$

foldr :: Foldable $t \Rightarrow (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow t \ a \rightarrow b$

the type-wise distance between foldr and foldl is the flip (24) of the first parameter.

So the "best fit" one can aim at is

$$foldl f \stackrel{?}{=} foldr \stackrel{\sim}{f}$$
 (36)

possibly valid for a (as wide as possible) class of functions f and instances of class *Foldable*.

But... no law relating both

Free theorems only relate pairs of folds, e.g. in (32):

$$g \times (h y) = h (f \times y) \Rightarrow h (foldr f e \times s) = foldr g (h e) \times s$$

Perhaps a universal property could be found?

For this we need to get rid of one foldr.

One way is to *assume* that, for some lpha and γ

holds. Then $(f, e := \alpha, \gamma)$:

$$g \times (h y) = h (\alpha \times y) \Rightarrow h \times s = \text{foldr } g (h \gamma) \times s$$

But... no law relating both

Free theorems only relate pairs of folds, e.g. in (32):

$$g \times (h y) = h (f \times y) \Rightarrow h (foldr f e \times s) = foldr g (h e) \times s$$

Perhaps a universal property could be found?

For this we need to get rid of one foldr.

One way is to assume that, for some α and γ ,

holds. Then $(f, e := \alpha, \gamma)$:

$$g \times (h y) = h (\alpha \times y) \Rightarrow h \times s = \text{foldr } g (h \gamma) \times s$$

Towards foldr-universal

Let us introduce $z = h \gamma$ and drop xs:

$$\begin{cases} h \gamma = z \\ h (\alpha \times y) = g \times (h y) \end{cases} \Rightarrow h = \text{foldr } g z$$
 (38)

So, **foldr** g z is the unique solution for h of the equations:

$$\begin{cases} h \gamma = z \\ h (\alpha \times y) = g \times (h y) \end{cases}$$

By substituting this solution in the equations we get a definition for foldr:

$$\begin{cases}
 \text{foldr } g \ z \ \gamma = z \\
 \text{foldr } g \ z \ (\alpha \times y) = g \times (\text{foldr } g \ z \ y)
\end{cases}$$
(39)

Towards foldr-universal

Moreover, this definition is mathematically equivalent to (just replace h by foldr g z and simplify):

$$h = \mathbf{foldr} \ g \ z \quad \Rightarrow \quad \left\{ \begin{array}{l} h \ \gamma = z \\ h \ (\alpha \times y) = g \times (h \ y) \end{array} \right. \tag{40}$$

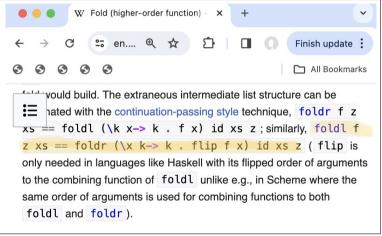
Altogether, (38) and (40) make up a universal property:

$$h = \mathbf{foldr} \ g \ z \quad \Leftrightarrow \quad \left\{ \begin{array}{l} h \ \gamma = z \\ h \ (\alpha \times xs) = g \times (h \times s) \end{array} \right. \tag{41}$$

(For lists, we can easily identify $\gamma = []$ and $\alpha \times xs = x : xs.$)

What about fold!?

Wikipedia



https://en.wikipedia.org/wiki/Fold_(higher-order_function)

Wikipedia

That is,

$$\overbrace{\text{foldl } f} = \text{foldr } (\lambda x \ k \to k \cdot \widehat{f} \ x) \ id \tag{42}$$

or

$$\mathbf{foldl} \ f = \mathbf{foldr} \ (\theta \ f) \ id
\mathbf{where} \ (\theta \ f) \times k = k \cdot (\hat{f} \times)$$
(43)

cf. the (functional) square

$$B^{B} \stackrel{\theta f}{\longleftarrow} A$$

$$(\cdot k) \downarrow \qquad \qquad \downarrow_{\widetilde{f}}$$

$$B^{B} \stackrel{(L)}{\longleftarrow} B^{B}$$

$$(44)$$

An advantage of defining **foldl** "as a **foldr**" (43) is that the universal property of the latter induces the universal property of the former:

```
k = \textbf{foldI } f
\Leftrightarrow \qquad \left\{ \begin{array}{l} \textbf{foldI } f = \overrightarrow{\textbf{foldr}} \ (\theta \ f) \ id \end{array} \right. (43) \ ; \ \textbf{flipping} \ \left. \right\}
\stackrel{\sim}{k} = \textbf{foldr} \ (\theta \ f) \ id
\Leftrightarrow \qquad \left\{ \begin{array}{l} \textbf{universal-foldr} \ (41) \ \text{etc} \end{array} \right. \right\}
\left\{ \begin{array}{l} \stackrel{\sim}{k} \gamma = id \\ \stackrel{\sim}{k} (\alpha \ x \ xs) = (\theta \ f) \ x \ (\stackrel{\sim}{k} \ xs) \end{array} \right.
```

```
{ introduce z and flip }
\begin{cases} k z \gamma = z \\ k z (\alpha x xs) = (\theta f) x (\overset{\sim}{k} xs) z \end{cases}
          { square (44) - (\theta f) \times g = g \cdot (\widetilde{f} x) }
\begin{cases} k z \gamma = z \\ k z (\alpha x xs) = \overset{\sim}{k} xs (f z x) \end{cases}
           { flipping }
\begin{cases} k z \gamma = z \\ k z (\alpha x xs) = k (f z x) xs \end{cases}
```

Thus we get the universal-property of **foldl**:

$$k = \text{foldl } f \Leftrightarrow \begin{cases} k \ z \ \gamma = z \\ k \ z \ (\alpha \ x \ xs) = k \ (f \ z \ x) \ xs \end{cases}$$
 (45)

Good — we already know something about foldl and foldr

But question (36) remains

Under what conditions does fold f = foldr f hold?

Thus we get the universal-property of foldl:

$$k = \text{foldl } f \Leftrightarrow \begin{cases} k \ z \ \gamma = z \\ k \ z \ (\alpha \times xs) = k \ (f \ z \times) \times s \end{cases}$$
 (45)

Good — we already know something about **fold!** and **foldr**

But question (36) remains

Under what conditions does fold $f = \text{foldr } \hat{f} \text{ hold?}$

Thus we get the universal-property of foldl:

$$k = \text{foldl } f \iff \begin{cases} k \ z \ \gamma = z \\ k \ z \ (\alpha \times xs) = k \ (f \ z \times) \times s \end{cases}$$
 (45)

Good — we already know something about foldl and foldr

But question (36) remains:

Under what conditions does fold f = foldr f hold?

Equating foldl and foldr

A popular assumption is that **foldl** f e and **foldr** f e compute the same output for f **associative** and e its **unit**, see e.g. exercise 1.10 of (Bird and Gibbons, 2020).

However, we have that, for instance (\div is div),

```
foldI (\div) 100000 [99, 2, 7] = 72 = foldr (\stackrel{\sim}{\div}) 100000 [99, 2, 7] foldI (\div) 10000 [99, 2, 7] = 7 = foldr (\stackrel{\sim}{\div}) 10000 [99, 2, 7]
```

and yet

- neither (\div) nor $(\widecheck{\div})$ are associative
- the other parameter can be any number.

How do we explain this and similar examples?

Equating foldl and foldr

A popular assumption is that **foldl** f e and **foldr** f e compute the same output for f **associative** and e its **unit**, see e.g. exercise 1.10 of (Bird and Gibbons, 2020).

However, we have that, for instance (\div is div),

```
foldl (\div) 100000 [99, 2, 7] = 72 = foldr (\widetilde{\div}) 100000 [99, 2, 7] foldl (\div) 10000 [99, 2, 7] = 7 = foldr (\widetilde{\div}) 10000 [99, 2, 7]
```

and yet

- neither (÷) nor (÷) are associative
- the other parameter can be any number.

How do we explain this and similar examples?

Equating foldI and foldr

We can use foldl-universal (45) to find an answer:

```
foldl f = \text{foldr } \stackrel{\sim}{f}
                            { universal property (45) }
             \begin{cases} \mathbf{foldr} \ \check{f} \ z \ \gamma = z \\ \mathbf{foldr} \ \check{f} \ z \ (\alpha \ x \ xs) = \mathbf{foldr} \ \check{f} \ (f \ z \ x) \ xs \end{cases}
\Leftrightarrow { flipping f z x }
            \begin{cases} \mathbf{foldr} \stackrel{\sim}{f} z \gamma = z \\ \mathbf{foldr} \stackrel{\sim}{f} z (\alpha \times xs) = \mathbf{foldr} \stackrel{\sim}{f} (\stackrel{\sim}{f} \times z) xs \end{cases}
```

Back to the permutativity squares

Recall (33)

which, for s := f, becomes

$$B \overset{\widetilde{f} \times}{\longleftarrow} B \qquad B \overset{\widetilde{f} \times}{\longleftarrow} B$$

$$B \overset{\widetilde{f} \times}{\longleftarrow} B \qquad \Rightarrow \text{ foldr } \widetilde{f} \downarrow \qquad \downarrow \text{ foldr } \widetilde{f}$$

$$B \overset{\widetilde{f} \times}{\longleftarrow} B \qquad B^{\mathbb{T} A} \overset{A}{\longleftarrow} B^{\mathbb{T} A}$$

This suits us because permuting foldr \tilde{f} with \tilde{f} x will be useful. Let us see why:

Equating foldl and foldr

```
\begin{cases} \mathbf{foldr} \stackrel{\sim}{f} z \gamma = z \\ \mathbf{foldr} \stackrel{\sim}{f} z (\alpha \times xs) = \mathbf{foldr} \stackrel{\sim}{f} (\stackrel{\sim}{f} \times z) xs \end{cases}
                 { (33) assuming permutativity: (\widetilde{f} \times) \cdot (\widetilde{f} \ a) = (\widetilde{f} \ a) \cdot (\widetilde{f} \times) }
\begin{cases} \mathbf{foldr} \stackrel{\sim}{f} z \gamma = z \\ \mathbf{foldr} \stackrel{\sim}{f} z (\alpha \times xs) = \stackrel{\sim}{f} x (\mathbf{foldr} \stackrel{\sim}{f} z \times s) \end{cases}
                 { definition of foldr (39) }
  True
```

Conclusion

We conclude that **foldl** $f = \mathbf{foldr} \ \widetilde{f}$ holds for the instances of class *Foldable* such that **foldr** $\alpha \ \gamma = id$ for some α and γ (37), provided that \widetilde{f} is **permutative**.

Back to e.g.

foldI (
$$\div$$
) 100000 [99, 2, 7] = 72 = foldr ($\stackrel{\sim}{\div}$) 100000 [99, 2, 7]
foldI (\div) 10000 [99, 2, 7] = 7 = foldr ($\stackrel{\sim}{\div}$) 10000 [99, 2, 7]

how can we be sure $(\stackrel{\sim}{\div})$ is **permutative**?

Galois connection squares

The specification of $x \div y$ is a **Galois connection**:

We can use (46) and **indirect equality** over (\leq) to prove

$$(\stackrel{\sim}{\div} a) \cdot (\stackrel{\sim}{\div} b) = (\stackrel{\sim}{\div} b) \cdot (\stackrel{\sim}{\div} a)$$

that is:

$$(x \div b) \div a = (x \div a) \div b$$

Never underestimate indirect equality

```
y \leq (x \div b) \div a
      { Galois connection (46) twice }
(y \times a) \times b \leq x
      \{ (x) \text{ is associative and commutative } \}
(v \times b) \times a \leq x
      { Galois connection (46) twice in the opposite direction }
y \leq (x \div a) \div b
      { by indirect equality (Dijkstra, 2001) }
(x \div b) a = (x \div a) \div b
```

Comments

Knowing that **permutativity** is enough for foldr/foldl "equality" is not new — see e.g. (Danvy, 2023).

Danvy's reasoning is, however, quite different: permutativity is **postulated** as side condition and then **proved** in Coq by **list induction**.

Above, permutativity arose (generically) by free-theorem calculation.

Moreover, it was shown that a commutative + associative **lower adjoint** f in $f \dashv g$ ensures a permutative g, widening Olivier Danvy's result.

Summary

• Simplicity (eventually) wins

"Magic" squares (U)

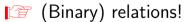
Widening scope (usually) helps

Summary

• Simplicity (eventually) wins

"Magic" squares (U)

• Widening scope (usually) helps



FPCA 1989

"From the **type** of a polymorphic function we can derive a **theorem** that it satisfies. (...)
How useful are the theorems so generated?

Only time and experience will tell (...)"

Indeed — many years later, experience is still telling us how useful such a fantastic result is!

Acknowledgements

This work is funded by national funds through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the support UID/50014/2023 (https://doi.org/10.54499/UID/50014/2023)

Annex

Permutativity matters

Insertion

insert :: Ord
$$a \Rightarrow a \rightarrow [a] \rightarrow [a]$$

on a linearly ordered list is a permutative operation.

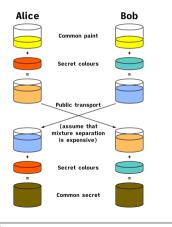
Thus insertion sort

computes the same as

This is assumed in the example of (Gibbons, 1996).

Permutativity matters

Diffie-Hellman key exchange (Merkle, 1978)¹:

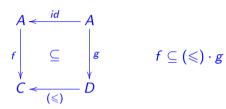


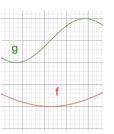
$$(+red) \cdot (+cyan) = (+cyan) \cdot (+red)$$

¹Source: Wikipedia

Pointwise ordering squares

Let R := id, $S := (\leqslant)$:





This square captures the (\leq) -pointwise-ordering of functions:

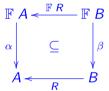
$$f \left(\leqslant \right)^{id} g \Leftrightarrow \langle \forall a :: f a \leqslant g a \rangle$$
 (47)

In words:

"The same input is mapped to (\leq) -related outputs".

Logical relation squares

Let $f, g := \alpha, \beta$ in a Reynolds square, where α and β are \mathbb{F} -algebras:



In a succint way, the square tells that R is a **logical** relation from α to β .

Compare with:

Definition 2.2. Given a signature Σ and two models, M and N, of the language L generated by Σ , a (binary) logical relation from M to N consists of, for each type σ of L, a relation $R_{\sigma} \subseteq M_{\sigma} \times N_{\sigma}$ such that

- for all f ∈ M_{σ→τ} and g ∈ N_{σ→τ}, we have f R_{σ→τ} g if and only if for all x ∈ M_σ and y ∈ N_σ, if x R_σ y then f(x) R_τ g(y);
 for all (x₀, x₁) ∈ M_{σ×τ} and (y₀, y₁) ∈ N_{σ×τ}, we have (x₀, x₁) R_{σ×τ} (y₀, y₁) if
- for all $(x_0, x_1) \in M_{\sigma \times \tau}$ and $(y_0, y_1) \in N_{\sigma \times \tau}$, we have $(x_0, x_1) R_{\sigma \times \tau} (y_0, y_1)$ and only if $x_0 R_{\sigma} y_0$ and $x_1 R_{\tau} y_1$;
- $\bullet * R_1 *;$
- $M(c) R_{\sigma} N(c)$ for every constant c in Σ of type σ .

(Plotkin et al. (2000) 'Lax Logical Relations', ICALP 2000: 85-102)

Algebraic squares

In case R is a function h (R := h),

$$\begin{bmatrix}
F & A & \stackrel{\mathbb{F} & h}{\longleftarrow} & F & B \\
\alpha & & & & \downarrow \beta \\
B & \stackrel{h}{\longleftarrow} & A
\end{bmatrix}$$

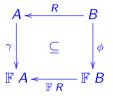
the square means

$$\alpha \cdot \mathbb{F} \ h = h \cdot \beta$$

by (6) and h is said to be a \mathbb{F} -homomorphism.

Coalgebraic squares

Let $f, g := \gamma, \phi$ in a Reynolds square, where γ and ϕ are \mathbb{F} -coalgebras:

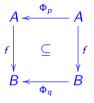


R is said to be a **bisimulation** between the two coalgebras, meaning:

$$\langle \forall a, b : a R b : (\gamma a) (\mathbb{F} R) (\phi b) \rangle$$

Hoare triple squares

Let $\Phi_p : A \to A$ be such that $b \Phi_p a \Leftrightarrow b = a \wedge p a$ in:



This square captures the **Hoare triple**:

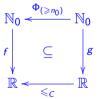
$$\langle \forall a :: p a \Rightarrow q (f a) \rangle$$

$\mathsf{Big} ext{-}\mathcal{O}$ squares

Define

$$y \leqslant_C x \Leftrightarrow y \leqslant C x$$

for some scalar *C*, in:



Meaning:

$$\langle \forall n :: n \geqslant n_0 \Rightarrow f \ n \leqslant C \ g \ n \rangle$$

Checking that (43) defines **foldl**

We unfold (43) via universal property (41):

```
\widetilde{\text{foldI } f} = \text{foldr } (\theta \ f) \ id
         { universal-foldr (41) }
\begin{cases} 
        \text{fold } f \ \gamma = id \\
        \text{fold } f \ (\alpha \times xs) \ z = (\theta \ f) \times (\text{fold } f \ xs) 
\end{cases}
          { definition of \theta (44) }
\{ go pointwise on z and unfold the flips \}
\begin{cases} \text{ foldl } f \ z \ \gamma = z \\ \text{ foldl } f \ z \ (\alpha \ x \ xs) = \text{foldl } f \ (f \ z \ x) \ xs \end{cases}
```

On relational exponentials S^R

By vertical composition (1) one immediately infers:

$$\left\{ \begin{array}{l} R' \subseteq R \\ S \subseteq S' \end{array} \right. \Rightarrow S^R \subseteq S'^{R'}$$

We also know that $id^{id} = id$ (11).

By horizontal composition (2) we get

$$S^{R} \cdot S^{\prime R^{\prime}} \subseteq (S \cdot S^{\prime})^{(R \cdot R^{\prime})} \tag{48}$$

However, the converse inclusion does not hold and so relational exponentiation is not in general a (bi)relator — in a sense, it can be regarded as a "lax (bi)relator.

Backhouse and Backhouse (2004) give conditions for strengthening (48) to an equality that include the cases involving functions and converses of functions used above.

Data.Foldable

```
instance Foldable M where
  foldMap = maybe mempty
foldr _ z Nothing = z
foldr f z (Just x) = f x z
foldl _ z Nothing = z
foldl f z (Just x) = f z x
```

```
Let \alpha x _ = Just x and \gamma = Nothing and unfold foldr \alpha \gamma:

foldr \alpha Nothing Nothing = Nothing

foldr \alpha Nothing (Just x) = \alpha x z = Just x
```

So foldr $\alpha \gamma = id$.

References

K. Backhouse and R.C. Backhouse. Safety of abstract interpretations for free, via logical relations and Galois connections. *SCP*, 15(1–2):153–196, 2004.

- R. Bird and J. Gibbons. *Algorithm Design with Haskell*. Cambridge University Press, 2020.
- O. Danvy. Folding left and right matters: Direct style, accumulators, and continuations. *Journal of Functional Programming*, 33:e2, 2023.
- E.W. Dijkstra. Indirect equality enriched, 2001. Technical note EWD 1315-0.
- P.J. Freyd and A. Scedrov. *Categories, Allegories*, volume 39 of *Mathematical Library*. North-Holland. 1990. ISBN: 9780444703682.
- J. Gibbons. The third homomorphism theorem. J. Funct. Program., 6(4):657–665, 1996. doi: 10.1017/S0956796800001908. URL https://doi.org/10.1017/S0956796800001908.
- R.C. Merkle. Secure communications over insecure channels. *Commun. ACM*, 21(4): 294–299. 1978.
- J.N. Oliveira. A note on the under-appreciated for-loop. Technical Report TR-HASLab:01:2020 (PDF), HASLab/U.Minho and INESC TEC, 2020.

- G. Plotkin, J. Power, D. Sannella, and R. Tennent. Lax logical relations. In Ugo Montanari, José D. P. Rolim, and Emo Welzl, editors, *Automata, Languages and Programming*, pages 85–102, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.
- J.C. Reynolds. Types, abstraction and parametric polymorphism. *Information Processing 83*, pages 513–523, 1983.
- J. Voigtländer. Free theorems simply, via dinaturality, 2019. arXiv cs.PL 1908.07776.
- P.L. Wadler. Theorems for free! In 4th Int. Symp. on Functional Programming Languages and Computer Architecture, pages 347–359, London, Sep. 1989. ACM.