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• Simplicity (eventually) wins
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Simplicity (eventually) wins

“Simplicity does not precede
complexity, but follows it.”

(Edsger Dijkstra)
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Widening context helps

(Ref: Wikipedia 7→ Euler’s formula)

https://en.wikipedia.org/wiki/Euler's_formula
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Freyd & Ščedrov, 1990

”(...) A special feature of our approach is a
general calculus of relations presented in part
two.

This calculus offers another, often more
amenable framework for concepts and methods
discussed in part one.”
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Functions
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Functions ⊆ Relations
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Braga, June 2003

JNO - “(...) What I find lacking in
functional programming practice
is formal specification...”

SPJ - “But, types are... the formal
specifications, aren’t they?”

It took me 20+ years to fully appreciate this answer!
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Squares
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“Magic” square
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“Magic” square

Pointfree:

A

P

��

B

Q

��

Roo

⊆

C D
S

oo

P · R ⊆ S · Q

Pointwise:

∃ a d

P · R ⇒ S · Q

∀ c b c b
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Vertical composition

A

P

��

C

Q

��

Roo

⊆

B

P′

��

D
S

oo

Q′

��

⊆

B ′ D ′
S ′

oo

⇒

A

P′·P

��

C

Q′·Q

��

Roo

⊆

B ′ D ′
S ′

oo

(1)
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Horizontal composition

A

P

��

C

Q

��

Roo C ′
R′oo

Q′

��

⊆ ⊆

B D
S

oo D ′
S ′

oo

⇒

A

P

��

C ′
R·R′oo

Q′

��

⊆

B ′ D ′
S ·S ′

oo

(2)
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Identity

A

id

��

C

id

��

Roo

⊆

A

P

��

C

Q

��

Roo

⊆

B

id

��

D
S

oo

id

��

⊆

B D
S

oo

⇔

A

P

��

C

Q

��

Roo

⊆

B D
S

oo

(Similarly for horizontal.)
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Converse

A

P

��

C

Q

��

Roo

⊆

B D
S

oo

⇔

A

R◦

��

B
P◦oo

S◦

��

⊆

C D
Q◦

oo

The converse of a square is its “passive voice”

x R◦ y ⇔ y R x



Motivation Squares Reynolds squares Free theorem squares Folds Acknowledgements References

Functorial squares

Functor F:

A

P

��

C

Q

��

Roo

⊆

B D
S

oo

⇒

F A

F P

��

F C

F Q

��

F Roo

⊆

F B F D
F S

oo

F should be monotonic and preserve converses — a relator (Freyd and Scedrov, 1990).
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Squares with functions

Some relations f fit into the following squares:

A

id

��

A

f

��

idoo B
f ◦oo

id

��
⊆ ⊆

A B
f ◦

oo B
id

oo

(3)

Left square: 〈∀ a :: 〈∃ b :: b f a〉〉 f is total.

Right square: 〈∀ b, b′ :: 〈∃ a :: b f a ∧ b′ f a〉 ⇒ (b = b′)〉

f is univocal.

Such relations f are called functions.
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Squares with functions

Let f be a function. Then:

A

f

��

C

Q

��

Roo

⊆

B B
id

oo

⇔

A

id

��

C
Roo

Q

��
⊆

A B
f ◦

oo

This is the shunting rule:

f · R ⊆ Q ⇔ R ⊆ f ◦ · Q (4)

Taking converses:

R · f ◦ ⊆ Q ⇔ R ⊆ Q · f (5)
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“Nice” rules about functions

Functional equality:

f ⊆ g ⇔ f = g ⇔ g ⊆ f (6)

∃-quantifiers go away:

b (f ◦ · R · g) a ⇔ (f b) R (g a) (7)

B
f // C D

Roo A
goo

f ◦·R·g

ii

R Very useful in practice
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Squares with functions

A very common square with two functions:

A

f

��

B

g

��

Roo

⊆

C D
S

oo

f · R ⊆ S · g (8)

This square captures a higher-order relation on functions:

f SR g ⇔ f · R ⊆ S · g (9)

In words:

“R-related inputs are mapped to S-related outputs”.
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“Higher-order” squares

Because of their role in free theorems, these squares will be referred to as Reynolds
squares:

A

f

��

B

g

��

Roo

⊆

C D
S

oo

that is to say,

A B
Roo

C D
Soo

CA DBSR
oo

Thus one is lead to relational exponentials SR such that e.g.

(SR)◦ = (S◦)(R◦) (10)

id id = id (11)

etc. NB: We often write S ← R or R → S instead of SR when exponents get too
nested.
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“Higher-order” squares

Functions-only Reynolds squares:

f (kh) g ⇔ f · h = k · g (12)

In case of h◦ instead of h,

f (kh◦) g ⇔ f · h◦ ⊆ k · g (13)

we get a higher-order function (via shunting + equality):

(kh◦) g = k · g · h (14)
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“Higher-order” squares
Then:

(id → k) g = k · g (15)

(h◦ → id) g = g · h (16)

cf. covariant and contravariant exponentials.

In fully pointfree notation, (15,16) become

k id = (k ·)
id (h◦) = (·h)

Then, by (10):

idh = (·h)◦ (17)

and so on and so forth.

R Rich construction!
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Higher-order Reynolds squares

Relational exponentials SR can involve other exponentials, for instance (SQ)
R

i.e.
R → SQ :

A

f

��

B

g

��

Roo

⊆

XC Y D

SQ
oo

f (R → SQ) g

Let us unfold this, assuming all fresh variables universally quantified:
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Higher-order Reynolds squares

f (R → SQ) g (18)

⇔ { Reynolds square (8) }

f · R ⊆ SQ · g
⇔ { shunting (4) followed by “nice rule” (7) }

a R b ⇒ (f a) SQ (g b)

⇔ { (8) again }

a R b ⇒ ((f a) · Q ⊆ S · (g b))

⇔ { (4) followed by (7) again }

a R b ⇒ c Q d ⇒ (f a c) S (g b d) (19)
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Relational types

Let f = g in Reynolds square (8):

A

f

��

A

f

��

Roo

⊆

C C
S

oo

f · R ⊆ S · f (20)

We often abbreviate f SR f to f : R → S , meaning that f has relational type R → S .

Note how type variables A and C in f : A→ C are straightforwardly replaced
by relations R and S in f : R → S.

R Types “are” relations (Voigtländer, 2019).
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Relational types by example

f : (6)→ (�) f is monotonic
A

f

��

A
(6)oo

f

��
⊆

B B
(�)

oo

f : (t0+)→ id f is periodic
R

f

��

R
(t0+)oo

f

��
⊆

B B
id

oo

f :> → id f is constant
A

f

��

A
>oo

f

��
⊆

B B
id

oo
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Category

Objects — binary relations R, S , ...

Morphisms — R
f // S as above (20)

R This category is named Rel2 in (Plotkin et al., 2000).

Relational type R → S corresponds to the homset Rel2 (R,S).

Rel2 is Cartesian closed, meaning that homset R → QS is, by uncurrying, isomorphic
to R × S → Q.

NB: “Tensor” product: (y , x) (R × S) (b, a)⇔ y R b ∧ x S a.
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Free theorem squares

Let a parametric function f : F X → G X be given.

Its free theorem states that f has relational type

f : F R → G R (21)

for any R relating its parameters, as shown in the corresponding square:

F A

f

��

F B
F Roo

f

��
⊆

G A G B
G R
oo

This extends to multi-parametric f , as shown next.
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Free theorem squares

Example: Haskell constant function const : a→ b → a.

By (21), const has relational type R → RS , that is:

A

const

��

C

const

��

Roo

⊆

AB CD

RS
oo

const · R ⊆ RS · const (22)
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Free theorem squares

A

const

��

C
Roo

const

��
⊆

AB CD

RS
oo

R := id
-

A

const

��

A
idoo

const

��
⊆

AB AD

idS
oo

(9)

?

6

B

const a

��

D
Soo

const a

��
⊆

A A
id

oo

shunting
� -

B

id

��

D
Soo

const a

��
⊆

B A
(const a)◦
oo
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Free theorem squares

B

id

��

D
Soo

const a

��
⊆

B A
(const a)◦
oo

S ⊆ (const a)◦ · (const a)

So (const a)◦ · const a is the largest possible S , i.e. the top relation >:

(const a)◦ · (const a) = > (23)

Thus no other function can be less injective than const a.
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On Injectivity

NB: injective functions are those that fit the square:

B

f ◦

��

A
foo

id

��
⊆

A A
id

oo

Path f ◦ · f is the kernel of f .

The kernel f ◦ · f of a function f tells how injective f is.

The larger the kernel the least injective the function is.
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Free theorem squares

B

const a

��

D
Soo

const a

��
⊆

A A
id

oo

S := h
-

B

const a

��

D
hoo

const a

��
=

A A
id

oo

const a · h = const a

A

const

��

C
Roo

const

��
⊆

AB CD

RS
oo

R, S := h, id
-

A

const

��

C
hoo

const

��
=

AB CD

hid
oo

h · (const c) = const (h c)
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Free theorem squares
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Free theorem squares
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Free theorem squares
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Free theorem squares

Example:

flip :: (a→ b → c)→ b → a→ c (24)

Free theorem: flip : QSR → QRS
, i.e.

g (R → QS) f ⇒ (flip g) (S → QR) (flip f )

That is (where f
:

abbreviates flip f ):

A

g

��

X

f

��

Roo

⊆

CB ZY

QS
oo

⇒

B

g:

��

Y

f
:

��

Soo

⊆

CA ZX

QR
oo

(25)
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Free theorem squares

For Q := id ,S := id and R := r (a function):

f (r → id) g ⇒ f
:

(id → id r ) g:

⇔ { (12) ; (15) }

f · r = g ⇒ f
:
⊆ id r · g:

⇔ { id r = (·r)◦ (17) ; substitution of g ; shunting (4) }

(·r) · f
:

= f · r
:

This is the fusion-law of flipping — here obtained more directly than through an
adjunction as in e.g. (Oliveira, 2020).
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Free theorem squares

Since types are (higher-order) squares...

... “how much is in a type”?

Quite a lot.

As we shall see by handling the types of the following functions:

foldl :: Foldable t ⇒ (b → a→ b)→ b → t a→ b
foldr :: Foldable t ⇒ (a→ b → b)→ b → t a→ b

(26)

(Hackage’s Data.Foldable )

https://hackage.haskell.org/package/base-4.19.0.0/docs/Data-Foldable.html
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foldl and foldr squares

Relational types (for T in the Foldable class):

foldl : (S → SR)→ (S → ST R) (27)

foldr : (R → SS)→ (S → ST R) (28)

As seen above:

• Two squares in each type.

• The left one is a pre-condition for the right one to hold.
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foldl squares

The squares of

foldl : (S → SR)→ (S → ST R)

are:

B

g

��

Y

f

��

Soo

⊆

BA Y X

SR
oo

⇒

B

foldl g

��

Y

foldl f

��

Soo

⊆

BT A Y T X

ST R
oo

(29)
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foldl squares

For R,S := id , h (hence X = A), both ST R and SR reduce to (h·) by T id = id and
(15).

So the squares become equalities:

B

g
��

Y

f
��

hoo

BA Y A

(h·)
oo

⇒

B

foldl g
��

Y

foldl f
��

hoo

BT A Y T A

(h·)
oo

Pointwise:

h (f y x) = g (h y) x ⇒ h (foldl f y xs) = foldl g (h y) xs

Fusion law of foldl proved in (Bird and Gibbons, 2020) for finite lists.
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foldr

Repeating the above exercise for foldr (28):

A

g

��

X

f

��

Roo

⊆

BB Y Y

SS
oo

⇒

B

foldr g

��

Y

foldr f

��

Soo

⊆

BT A Y T X

ST R
oo

(30)

Same right square as in (29), but the side-condition square is different:

g · R ⊆ SS · f
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foldr squares

For R,S := id , h we get

A

g ��

A

f��

idoo

BB Y Y

hh
oo

⇒

B

foldr g
��

Y

foldr f
��

hoo

BT A Y T A

(h·)
oo

where the side-condition square unfolds to:

g (id → hh) f

⇔ { (47) }

(g x) hh (f x)

⇔ { (12) }

(g x) · h = h · (f x)
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foldr squares

Altogether, one has

B
g x
��

Y

f x��

hoo

B Y
h
oo

⇒

B

foldr g
��

Y

foldr f
��

hoo

BT A Y T A

(h·)
oo

that is:

(g x) · h = h · (f x) ⇒ foldr g · h = (h·) · foldr f (31)

i.e. the fully pointwise:

g x (h y) = h (f x y) ⇒ h (foldr f e xs) = foldr g (h e) xs (32)

foldr-fusion law proved in (Bird and Gibbons, 2020) for finite lists.
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Corollary of foldr-fusion

In (31), let f and g be the same function, say s, and let h := s a

B

s x
��

B

s x
��

s aoo

B Bs a
oo

⇒

B

foldr s
��

B

foldr s
��

s aoo

BT A BT A

(s a·)
oo

Then (31) becomes:

(s x) · (s a) = (s a) · (s x) ⇒ foldr s · (s a) = (s a·) · foldr s (33)
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Permutativity squares

Square

B

s x
��

B

s x
��

s aoo

B Bs a
oo

(34)

captures the (left) permutativity property of (Danvy, 2023):

(s x) · (s a) = (s a) · (s x) (35)

— i.e. the fully pointwise s x (s a y) = s a (s x y)

R If s is associative and commutative then it is permutative.
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Is foldl equal to foldr?

Looking at

foldl :: Foldable t ⇒ (b → a→ b)→ b → t a→ b
foldr :: Foldable t ⇒ (a→ b → b)→ b → t a→ b

the type-wise distance between foldr and foldl is the flip (24) of the first parameter.

So the “best fit” one can aim at is

foldl f
?
= foldr f

:
(36)

possibly valid for a (as wide as possible) class of functions f and instances of class
Foldable.
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But... no law relating both

Free theorems only relate pairs of folds, e.g. in (32):

g x (h y) = h (f x y) ⇒ h (foldr f e xs) = foldr g (h e) xs

Perhaps a universal property could be found?

For this we need to get rid of one foldr.

One way is to assume that, for some α and γ,

foldr α γ = id (37)

holds. Then (f , e := α, γ):

g x (h y) = h (α x y) ⇒ h xs = foldr g (h γ) xs
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Towards foldr-universal

Let us introduce z = h γ and drop xs:{
h γ = z
h (α x y) = g x (h y)

⇒ h = foldr g z (38)

So, foldr g z is the unique solution for h of the equations:{
h γ = z
h (α x y) = g x (h y)

By substituting this solution in the equations we get a definition for foldr:

{
foldr g z γ = z
foldr g z (α x y) = g x (foldr g z y)

(39)
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Towards foldr-universal

Moreover, this definition is mathematically equivalent to (just replace h by foldr g z
and simplify):

h = foldr g z ⇒
{

h γ = z
h (α x y) = g x (h y)

(40)

Altogether, (38) and (40) make up a universal property:

h = foldr g z ⇔
{

h γ = z
h (α x xs) = g x (h xs)

(41)

(For lists, we can easily identify γ = [ ] and α x xs = x : xs.)

What about foldl?
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Wikipedia

https://en.wikipedia.org/wiki/Fold_(higher-order_function)

https://en.wikipedia.org/wiki/Fold_(higher-order_function)
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Wikipedia

That is,

foldl f
:

= foldr (λx k → k · f
:

x) id (42)

or

foldl f
:

= foldr (θ f ) id (43)

where (θ f ) x k = k · (f
:

x)

cf. the (functional) square

BB

(·k)
��

A
θ foo

f
:
��

BB BB

(k·)
oo

(44)
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Universal-foldl

An advantage of defining foldl “as a foldr” (43) is that the universal property of the
latter induces the universal property of the former:

k = foldl f

⇔ { foldl f = foldr (θ f ) id
:

(43) ; flipping }

k
:

= foldr (θ f ) id

⇔ { universal-foldr (41) etc }{
k
:
γ = id

k
:

(α x xs) = (θ f ) x (k
:

xs)
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Universal-foldl

⇔ { introduce z and flip }{
k z γ = z

k z (α x xs) = (θ f ) x (k
:

xs) z

⇔ { square (44) — (θ f ) x g = g · (f
:
x) }{

k z γ = z

k z (α x xs) = k
:

xs (f z x)

⇔ { flipping }{
k z γ = z
k z (α x xs) = k (f z x) xs
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Universal-foldl

Thus we get the universal-property of foldl:

k = foldl f ⇔
{

k z γ = z
k z (α x xs) = k (f z x) xs

(45)

Good — we already know something about foldl and foldr

But question (36) remains:

Under what conditions does foldl f = foldr f
:

hold?
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Equating foldl and foldr

A popular assumption is that foldl f e and foldr f
:

e compute the same output for f
associative and e its unit, see e.g. exercise 1.10 of (Bird and Gibbons, 2020).

However, we have that, for instance (÷ is div),

foldl (÷) 100000 [99, 2, 7] = 72 = foldr (÷:) 100000 [99, 2, 7]

foldl (÷) 10000 [99, 2, 7] = 7 = foldr (÷:) 10000 [99, 2, 7]

and yet

• neither (÷) nor (÷:) are associative

• the other parameter can be any number.

How do we explain this and similar examples?
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Equating foldl and foldr

We can use foldl-universal (45) to find an answer:

foldl f = foldr f
:

⇔ { universal property (45) }{
foldr f

:
z γ = z

foldr f
:

z (α x xs) = foldr f
:

(f z x) xs

⇔ { flipping f z x }{
foldr f

:
z γ = z

foldr f
:

z (α x xs) = foldr f
:

(f
:

x z) xs
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Back to the permutativity squares

Recall (33)

B

s a
��

B

s a
��

s xoo

B Bs x
oo

⇒

B

foldr s
��

B

foldr s
��

s xoo

BT A BT A

(s x ·)
oo

which, for s := f
:

, becomes

B

f
:
a
��

B

f
:
a
��

f
:
xoo

B B
f
:
x

oo

⇒

B

foldr f
:
��

B

foldr f
:

��

f
:
xoo

BT A BT A

(f
:
x ·)

oo

This suits us because permuting foldr f
:

with f
:

x will be useful. Let us see why:
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Equating foldl and foldr

{
foldr f

:
z γ = z

foldr f
:

z (α x xs) = foldr f
:

(f
:

x z) xs

⇔ { (33) assuming permutativity: (f
:
x) · (f

:
a) = (f

:
a) · (f

:
x) }{

foldr f
:

z γ = z

foldr f
:

z (α x xs) = f
:

x (foldr f
:

z xs)

⇔ { definition of foldr (39) }

True
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Conclusion

We conclude that foldl f = foldr f
:

holds for the instances of class Foldable such that
foldr α γ = id for some α and γ (37), provided that f

:
is permutative.

Back to e.g.

foldl (÷) 100000 [99, 2, 7] = 72 = foldr (÷:) 100000 [99, 2, 7]

foldl (÷) 10000 [99, 2, 7] = 7 = foldr (÷:) 10000 [99, 2, 7]

how can we be sure (÷:) is permutative?
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Galois connection squares

The specification of x ÷ y is a Galois connection:

A

(×y)◦

��

A

(÷y)
��

(6)oo

=

B B
(6)
oo

a× y 6 x ⇔ a 6 x ÷ y (46)

We can use (46) and indirect equality over (6) to prove

(÷: a) · (÷: b) = (÷: b) · (÷: a)

that is:

(x ÷ b)÷ a = (x ÷ a)÷ b
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Never underestimate indirect equality

y 6 (x ÷ b)÷ a

⇔ { Galois connection (46) twice }

(y × a)× b 6 x

⇔ { (×) is associative and commutative }

(y × b)× a 6 x

⇔ { Galois connection (46) twice in the opposite direction }

y 6 (x ÷ a)÷ b

:: { by indirect equality (Dijkstra, 2001) }

(x ÷ b) a = (x ÷ a)÷ b
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Comments

Knowing that permutativity is enough for foldr/foldl “equality” is not new — see e.g.
(Danvy, 2023).

Danvy’s reasoning is, however, quite different: permutativity is postulated as side
condition and then proved in Coq by list induction.

R Above, permutativity arose (generically) by free-theorem calculation.

Moreover, it was shown that a commutative + associative lower adjoint f in f a g
ensures a permutative g , widening Olivier Danvy’s result.
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Summary

• Simplicity (eventually) wins

R “Magic” squares

• Widening scope (usually) helps

R (Binary) relations!
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FPCA 1989

“From the type of a polymorphic function we
can derive a theorem that it satisfies. (...)
How useful are the theorems so generated?

Only time and experience will tell (...)”

Indeed — many years later, experience is still
telling us how useful such a fantastic result is!
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Permutativity matters

Insertion

insert :: Ord a⇒ a→ [a ]→ [a ]

on a linearly ordered list is a permutative operation.

Thus insertion sort

foldr insert [ ]

computes the same as

foldl insert
:

[ ].

This is assumed in the example of (Gibbons, 1996).
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Permutativity matters

Diffie-Hellman key exchange (Merkle, 1978)1:

(+red) · (+cyan) = (+cyan) · (+red)

1Source: Wikipedia
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Pointwise ordering squares
Let R := id , S := (6):

A

f

��

A

g

��

idoo

⊆

C D
(6)

oo

f ⊆ (6) · g

This square captures the (6)-pointwise-ordering of functions:

f (6)id g ⇔ 〈∀ a :: f a 6 g a〉 (47)

In words:

“The same input is mapped to (6)-related outputs”.
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Logical relation squares

Let f , g := α, β in a Reynolds
square, where α and β are
F-algebras:

F A

α

��

F B
F Roo

β

��
⊆

A B
R

oo

In a succint way, the square
tells that R is a logical
relation from α to β.

Compare with:

(Plotkin et al. (2000) ’Lax Logical Relations’,
ICALP 2000: 85-102)
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Algebraic squares

In case R is a function h (R := h),

F A

α

��

F B
F hoo

β

��
=

B A
h

oo

the square means

α · F h = h · β

by (6) and h is said to be a F-homomorphism.
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Coalgebraic squares

Let f , g := γ, φ in a Reynolds square, where γ and φ are F-coalgebras:

A

γ

��

B
Roo

φ

��
⊆

F A F B
F R

oo

R is said to be a bisimulation between the two coalgebras, meaning:

〈∀ a, b : a R b : (γ a) (F R) (φ b)〉
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Hoare triple squares

Let Φp : A→ A be such that b Φp a⇔ b = a ∧ p a in:

A

f

��

A
Φpoo

f

��
⊆

B B
Φq

oo

This square captures the Hoare triple:

〈∀ a :: p a⇒ q (f a)〉
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Big-O squares

Define

y 6C x ⇔ y 6 C x

for some scalar C , in:

N0

f

��

N0

Φ(>n0)oo

g

��
⊆

R R
6C

oo

Meaning:

〈∀ n :: n > n0 ⇒ f n 6 C g n〉
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Checking that (43) defines foldl
We unfold (43) via universal property (41):

foldl f
:

= foldr (θ f ) id

⇔ { universal-foldr (41) }{
foldl f
:

γ = id

foldl f
:

(α x xs) z = (θ f ) x (foldl f
:

xs)

⇔ { definition of θ (44) }{
foldl f
:

γ = id

foldl f
:

(α x xs) = foldl f
:

xs (f
:

x z)

⇔ { go pointwise on z and unfold the flips }{
foldl f z γ = z
foldl f z (α x xs) = foldl f (f z x) xs
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On relational exponentials SR

By vertical composition (1) one immediately infers:{
R ′ ⊆ R
S ⊆ S ′

⇒ SR ⊆ S ′
R′

We also know that id id = id (11).

By horizontal composition (2) we get

SR · S ′R
′

⊆ (S · S ′)(R·R′)
(48)

However, the converse inclusion does not hold and so relational exponentiation is not in general
a (bi)relator — in a sense, it can be regarded as a “lax (bi)relator.

Backhouse and Backhouse (2004) give conditions for strengthening (48) to an equality that
include the cases involving functions and converses of functions used above.
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Data.Foldable

instance Foldable M where
foldMap = maybe mempty

foldr z Nothing = z
foldr f z (Just x) = f x z

foldl z Nothing = z
foldl f z (Just x) = f z x

Let α x = Just x and γ = Nothing and unfold foldr α γ:

foldr α Nothing Nothing = Nothing
foldr α Nothing (Just x) = α x z = Just x

So foldr α γ = id .
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